【www.guakaob.com--初一】
不等式与不等式组
(时间:45分钟 满分:100分) 姓名
一、选择题(每小题5分,共30分)
1. 若m>n,则下列不等式中成立的是( )
A.m + a<n + b B.ma<nb
C.ma2>na2 D.am<an
2.不等式4(x2)>2(3x + 5)的非负整数解的个数为( )
A.0个 B.1个
C.2个 D.3个
3.若不等式组的解集为1≤x≤3,则图中表示正确的是( )
A. B.
C. D.
4.若方程3mx11m3x5x的解是负数,则m的取值范围是( )
55 B.m 44
55C.m D.m 44
15.不等式xm2m的解集为x2,则m 的值为( ) 3 A.m
A.4 B.2
C.31 D. 22
6.不等式组x1的解集是( )
x23
A.x≥1 B.x<5
C.1≤x<5 D.x≤1或x<5
二、填空题(每小题5分,共20分)
7.已知x的1与5的差不小于3,用不等式表示这一关系式为 。 2
8.某饮料瓶上有这样的字样:Eatable Date 18 months. 如果用x (单位:月)表示Eatable Date(保质
期),那么该饮料的保质期可以用不等式表示为 。
9.当3x5的值大于5x + 3的值。
10.阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如
果用x表示他的速度(单位:米/分),则x的取值范围为 。
三、做一做(每小题6分,共12分)
11.、解不等式
1x12x,并把它的解集表示在数轴上。 37
5x13(x1)12.解不等式组13 x17x22
四、想一想(每小题9分,共18分)
13.已知方程组
3x2ym1,m为何值时,x>y? 2xym1
14.有一个两位数,其十位数字比个位数字大2,这个两位数在50和70之间,你能求出这个两位数吗?
五、实际应用(每小题10分,共20分0
15.小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则
每立方米收费1. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是多少?
16.学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则
剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也不满。有多少间宿舍,多少名女生?
附:命题意图及参考答案
(一)命题意图
一、选择题
1.此题意在考查学生对不等式性质的掌握情况。
2.此题意在考查学生能否在不等式的解集中选出符合要求的解。
3. 此题意在考查学生能否把不等式组的解集正确地表示在数轴上。
4.此题意在考查学生能否结合已知条件列出不等式寻求问题答案。
5. 此题意在考查学生对不等式解集的意义的理解:不等式解集的唯一的。
6.此题意在考查学生是否能正确地确定不等式组的解集。
二、填空题
7.此题意在考查学生能否用数学关系式表达不等式。
8.此题意在考查学生能否把不等式关系应用到生活实际中。
9.此题意在考查学生能否正确地解不等式。
10.此题意在考查学生能否运用不等式的知识解决生活中的实际问题。
三、做一做
11.此题意在考查学生是否掌握了不等式的解法及不等式组解集的表示。
12.此题意考查学生能否正确地解不等式组。
四、想一想
13.此题意在考查学生能否将方程组的解之间的关系用不等式表示,从而解不等式寻求答案。
14.此题意在考查学生能否正确列出不等式组,并在不等式组的解集中取出符合要求的解。
五、实际应用
本大题意在考查学生利用不等式及不等组解决实际问题的能力。
1.D
2.A
3.D
4.A
5.B
6.C
7. 1
2x5≥3.
8.x≤18
9.x<4
10. 60<x<80
11.x≥4,数轴表示略。
12.2<x≤4
13.m>4
14.53,64
15.8立方米
16.5间房,30名女生。
(二)参考答案
七年级数学第五章《相交线与平行线》测试卷
班级 _______ 姓名 ________ 坐号 _______ 成绩 _______
一、选择题(每小题3分,共 30 分)
1、如图所示,∠1和∠2是对顶角的是( )
A
1
B
1
C1
D
1
2
A
2、如图AB∥CD可以得到( )
A、∠1=∠2 B、∠2=∠3 C、∠1=∠4 D、∠3=∠4 3、直线AB、CD、EF相交于O,则∠1+∠2+∠3=( ) A、90° B、120° C、180° D、140° 4、如图所示,直线a 、b被直线c所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a∥b的条件的序号是( )
A、①② B、①③ C、①④ D、③④
5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A、第一次左拐30°,第二次右拐30° B、第一次右拐50°,第二次左拐130° C、第一次右拐50°,第二次右拐130° D、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( )
3
D
B
13
2
2367
ba
(第4题)
D
B
D
C
7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD面积的比是( )
ABA、3:4 B、5:8 C、9:16 D、1:2
(第7题)
8、下列现象属于平移的是( )
① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走
A、③ B、②③ C、①②④ D、①②⑤ 9、下列说法正确的是( )
BAA、有且只有一条直线与已知直线平行
B、垂直于同一条直线的两条直线互相垂直 EC、从直线外一点到这条直线的垂线段,叫做这点到这
CD条直线的距离。 (第10题)
D、在平面内过一点有且只有一条直线与已知直线垂直。 10、直线AB∥CD,∠B=23°,∠D=42°,则∠E=( )
A、23° B、42° C、65° D、19°
二、填空题(本大题共6小题,每小题3分,共18分)
11、直线AB、CD相交于点O,若∠AOC=100°,则 ∠AOD=___________。
12、若AB∥CD,AB∥EF,则CD_______EF,其理由 是_______________________。
13、如图,在正方体中,与线段AB平行的线段有______ ____________________。
14、奥运会上,跳水运动员入水时,形成的水花是评委 评分的一个标准,如图所示为一跳水运动员的入水前的 路线示意图。按这样的路线入水时,形成的水花很大, 请你画图示意运动员如何入水才能减小水花?
15、把命题“等角的补角相等”写成“如果……那么……” 的形式是:_________________________。
16、如果两条平行线被第三条直线所截,一对同旁内角的 度数之比是2:7,那么这两个角分别是_______。
E
F
H
A
GB
第13题
(第14题)
三 、(每题5分,共15分)
M
17、如图所示,直线AB∥CD,∠1=75°,求∠2的度数。
1
AB
CD N第17题 18、如图,直线AB 、CD相交于O,OD平分∠AOF,OE⊥CD于点O,∠1=50°,求∠COB 、【人教版初一数学各章试题及答案】
F∠BOF的度数。
D
O
BA 1
(第18题)
E
19、如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/S的速度沿着A→B方向移动,则经过多长时间,平移后的长方形与原来长方形重叠部分的面积为24? HC
DG
AB
(第18题)
四、(每题6分,共18分)
20、△ABC在网格中如图所示,请根据下列提示作图 (1)向上平移2个单位长度。 (2)再向右移3个单位长度。
A
21、如图,选择适当的方向击打白球,可使白球反弹后将红球撞入袋中。此时,∠1=∠2,∠3=∠4,如果红球与洞口的连线与台球桌面边缘的夹角∠5=30°,那么∠1等于多少度时,才能保证红球能直接入袋?
22、把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M 、N的位置上,若∠EFG=55°,求∠1和∠2的度数。
E DA
1
2
BC
N
五、(第23题9分,第24题10分,共19分)
23、如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,那么DF∥AC,请完成它成立的理由
∵∠1=∠2,∠2=∠3 ,∠1=∠4( )
D∴∠3=∠4( )
∴________∥_______ ( )
∴∠C=∠ABD( ) ∵∠C=∠D( )
A∴∠D=∠ABD( ) ∴DF∥AC( ) 24、如图,DO平分∠AOC,OE平分∠BOC,若OA⊥OB, (1)当∠BOC=30°,∠DOE=_______________ 当∠BOC=60°,∠DOE=_______________
(2)通过上面的计算,猜想∠DOE的度数与∠AOB
有什么关系,并说明理由。
E
F1
3第19题)
ADBEC
O
七年级数学第六章《平面直角坐标系》测试卷
班级 _______ 姓名 ________ 坐号 _______ 成绩 _______
一、选择题(每小题3分,共 30 分)
1、根据下列表述,能确定位置的是( )
A、红星电影院2排 B、北京市四环路 C、北偏东30° D、东经118°,北纬40° 2、若点A(m,n)在第三象限,则点B(|m|,n)所在的象限是( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 3、若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为( ) A、(3,3) B、(-3,3) C、(-3,-3)D、(3,-3) 4、点P(x,y),且xy<0,则点P在( ) A、第一象限或第二象限 B、第一象限或第三象限 C、第一象限或第四象限 D、第二象限或第四象限
5、如图1,与图1中的三角形相比,图2中的三角形发生
的变化是( )
A、向左平移3个单位长度 B、向左平移1个单位长度 C、向上平移3个单位长度 D、向下平移1个单位长度 6、如图3所示的象棋盘上,若○帅位于点(1,-2)上,○相位
于点(3,-2)上,则○炮位于点( )
A、(1,-2) B、(-2,1) C、(-2,2) D、(2,-2) 7、若点M(x,y)的坐标满足x+y=0,则点M位于( ) 图3A、第二象限 B、第一、三象限的夹角平分线上 C、第四象限 D、第二、四象限的夹角平分线上
8、将△ABC的三个顶点的横坐标都加上-1,纵坐标不变,则所得图形与原图形的关系是( )
A、将原图形向x轴的正方向平移了1个单位 B、将原图形向x轴的负方向平移了1个单位 C、将原图形向y轴的正方向平移了1个单位 D、将原图形向y轴的负方向平移了1个单位 9、在坐标系中,已知A(2,0),B(-3,-4),C(0,0),则△ABC的面积为( ) A、4 B、6 C、8 D、3
10、点P(x-1,x+1)不可能在( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
二、填空题(每小题3分,共18分)
11、已知点A在x轴上方,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是______________。
12、已知点A(-1,b+2)在坐标轴上,则b=________。
13、如果点M(a+b,ab)在第二象限,那么点N(a,b)在第________象限。 14、已知点P(x,y)在第四象限,且|x|=3,|y|=5,则点P
15、已知点A(-4,a),B(-2,b)都在第三象限的角平分
人教版七年级数学下册各单元测试题及答案
第五章《相交线与平行线》测试卷
一、选择题(每小题3分,共 30 分) 1、如图所示,∠1和∠2是对顶角的是( )
B、第一次右拐50°,第二次左拐130° C、第一次右拐50°,第二次右拐130° D、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( )
DC
A
(第7题)
B
A
1
B
1
C1
D
1
2
2、如图AB∥CD可以得到( )
A、∠1=∠2 B、∠2=∠3 C、∠1=∠4 D、∠3=∠4 B
5
B
D
7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD面积的比是( )
A
D
1
23
67
23
ba
A、3:4 B、5:8 C、9:16 D、1:2 8、下列现象属于平移的是( )
① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走 A、③ B、②③ C、①②④ D、①②⑤ 9、下列说法正确的是( ) A、有且只有一条直线与已知直线平行 B、垂直于同一条直线的两条直线互相垂直
C、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。 D、在平面内过一点有且只有一条直线与已知直线垂直。 10、直线AB∥CD,∠B=23°,∠D=42°,则∠E=( ) A、23° B、42° C、65° D、19°
(第2题)
(第4题)
3、直线AB、CD、EF相交于O,则∠1+∠2+∠3=( ) A、90° B、120° C、180° D、140° 4、如图所示,直线a 、b被直线c所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a∥b的条件的序号是( )
A、①② B、①③ C、①④ D、③④
5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( )
A、第一次左拐30°,第二次右拐30°
AEC
(第10题)
BD
第 1 页 共 24 页第三章一元一次方程第1页
二、填空题(本大题共6小题,每小题3分,共18分)
11、直线AB、CD相交于点O,若∠AOC=100°,则∠AOD=___________。 12、若AB∥CD,AB∥EF,则CD____EF,其理由是___________________。 13、如图,在正方体中,与线段AB平行的线段有______________________。 14、奥运会上,跳水运动员入水时,形成的水花是评委评分的一个标准,如图所示为一跳水运动员的入水前的路线示意图。按这样的路线入水时,
EH
AFG
(第14题)
B第13题∠1=50°,求∠COB 、∠BOF的度数。
19、如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/S的速度沿着A→B方向移动,则经过多长时间,平移后的长方形与原来长方形重叠部分的面积为24?
四、(每题6分,共18分)
M
1
D
HC
G
15、把命题“等角的补角相等”写成“如果……那么……”的形式是:_________________________。
16、如果两条平行线被第三条直线所截,一对同旁内角的度数之比是2:7,那么这两个角分别是_______。 三 、(每题5分,共15分)
17、如图所示,直线AB∥CD,∠1=75°,求∠2的度数。
C
N
第17题
A(第18题)
B
20、△ABC在网格中如图所示,
BD
A
请根据下列提示作图
(1)向上平移2个单位长度。 (2)再向右移3个单位长度。
A
18、如图,直线AB 、CD相交于O,OD平分∠AOF,OE⊥CD于点O,
F
C21第 2 页 共 24 页第三章一元一次方程第2页
此时,∠1=∠2,∠3=∠4,如果红球与洞口的连线与台球桌面边缘的夹角∠5=30°,那么∠1等于多少度时,才能保证红球能直接入袋?
22、把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M 、N的位置上,若∠EFG=55°,求∠1和∠2的度数。
五、(第23题9分,第24题10分,共19分)
23、如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,那么DF∥AC,请完成它成立的理由
∵∠1=∠2,∠2=∠3 ,∠1=∠4( ) ∴∠3=∠4( ) ∴________∥_______ () ∴∠C=∠ABD( )
∵∠C=∠D( ) ∴∠D=∠ABD( ) ∴DF∥AC( )
A
3第19题)
DE
1F
A
D
O
24、如图,DO平分∠AOC,OE平分∠BOC,若OA⊥OB, (1)当∠BOC=30°,∠DOE=_______________
AB
2
E
1
DC
当∠BOC=60°,∠DOE=_______________ (2)通过上面的计算,猜想∠DOE的度数与∠AOB
N
有什么关系,并说明理由。
第 3 页 共 24 页第三章一元一次方程第3页
第五章《相交线与平行线》测试卷答案
一、1、D;2、C;3、C;4、A;5、A;6、C;7、B;8、D;9、D;10、C
二、11、80°; 12、11,平行于同一条直线的两条直线互相平行;13、EF、HG、DC;14、过表示运动员的点作水面的垂线段;15、如果两个角相等,那么这两个角的补角也相等;16、40°,140°。
三、17、105°;18、∠COB=40°,∠BOF=100°;19、3秒 四、20、略;21、∠1=60°;22、∠1=70°,∠2=110° 五、23、略;24、(1)45°,45°,(2)∠DOE=
1
2
∠AOB 第 4 页 共 24 页第三章一元一次方程第4页
第6章《实数》测试卷
一、选择题(每小题3分,共30分) 1、下列说法不正确的是( ) A、
11
的平方根是 B、-9是81的一个平方根 255
C、数轴上的点与整数一一对应 D、数轴上的点与实数一一对应 9、以下不能构成三角形边长的数组是( ) A、1,,2 B、,4,5 C、3,4,5 D、32,42,52
10、若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则b2-︱a-b︱等于( )
A、a B、-a C、2b+a D、2b-a 二、填空题(每小题3分,共18分)
11、81的平方根是__________,1.44的算术平方根是__________。 12、一个数的算术平方根等于它本身,则这个数应是__________。 13、8的绝对值是__________。 14、比较大小:27____42。
15、若25.36=5.036,253.6=15.906,则253600=__________。 16、若的整数部分为a,小数部分为b,则a=________,b=_______。 三、解答题(每题5分,共20分) 17、27+(3)2-1
C、0.2的算术平方根是0.04 D、-27的立方根是-3 2、若a的算术平方根有意义,则a的取值范围是( ) A、一切数 B、正数 C、非负数 D、非零数 3、若x是9的算术平方根,则x是( )
A、3 B、-3 C、9 D、81 4、在下列各式中正确的是( )
A、(2)2=-2 B
、=3 C、=8 D、22=2 5、估计76的值在哪两个整数之间( )
A、75和77 B、6和7 C、7和8 D、8和9 6、下列各组数中,互为相反数的组是( )
1
A、-2与(2) B、-2和8 C、-与2 D、︱-2︱和2
2
2
7、在-2,4,2,3.14,
27,,这6个数中,无理数共有( )
5
A、4个 B、3个 C、2个 D、1个 8、下列说法正确的是( )
A、数轴上的点与有理数一一对应 B、数轴上的点与无理数一一对应
第 5 页 共 24 页第三章一元一次方程第5页
七年级数学第五章《相交线与平行线》测试卷
一、选择题(每小题3分,共 30 分)
1、如图所示,∠1和∠2是对顶角的是( )
A
1
B
1
C1
D
1
2
A
2、如图AB∥CD可以得到( )
A、∠1=∠2 B、∠2=∠3 C、∠1=∠4 D、∠3=∠4
B3、直线AB、CD、EF相交于O,则∠1+∠2+∠3=( )
A、90° B、120° C、180° D、140° 4、如图所示,直线a 、b被直线c所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a∥b的条件的序号是( )
A、①② B、①③ C、①④ D、③④
5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A、第一次左拐30°,第二次右拐30° B、第一次右拐50°,第二次左拐130° C、第一次右拐50°,第二次右拐130° D、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( )
3
D
13
2
2367
5
ba
(第4题)
D
A
B
D
C
7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影
部分面积与正方形ABCD面积的比是( )
ABA、3:4 B、5:8 C、9:16 D、1:2
(第7题)
8、下列现象属于平移的是( )
① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走
A、③ B、②③ C、①②④ D、①②⑤ 9、下列说法正确的是( )
BAA、有且只有一条直线与已知直线平行
B、垂直于同一条直线的两条直线互相垂直 EC、从直线外一点到这条直线的垂线段,叫做这点到这
CD条直线的距离。 (第10题)
D、在平面内过一点有且只有一条直线与已知直线垂直。 10、直线AB∥CD,∠B=23°,∠D=42°,则∠E=( ) A、23° B、42° C、65° D、19°
二、填空题(本大题共6小题,每小题3分,共18分)
11、直线AB、CD相交于点O,若∠AOC=100°,则∠AOD=___________。
E
12、若AB∥CD,AB∥EF,则CD_______EF,其理由 是_______________________。
13、如图,在正方体中,与线段AB平行的线段有______ ____________________。
14、奥运会上,跳水运动员入水时,形成的水花是评委 评分的一个标准,如图所示为一跳水运动员的入水前的 路线示意图。按这样的路线入水时,形成的水花很大, 请你画图示意运动员如何入水才能减小水花?
15、把命题“等角的补角相等”写成“如果……那么……” 的形式是:_________________________。
16、如果两条平行线被第三条直线所截,一对同旁内角的 度数之比是2:7,那么这两个角分别是_______。
HA
F
B
第13题
G(第14题)
三 、(每题5分,共15分)
M
17、如图所示,直线AB∥CD,∠1=75°,求∠2的度数。
1
AB
CD
N第17题
18、如图,直线AB 、CD相交于O,OD平分∠AOF,OE⊥CD于点O, F
D
∠1=50°,求∠COB 、∠BOF的度数。
O
BA 1
C(第18题)
E
19、如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/S的速度沿着A→B方向移动,则经过多长时间,平移后的长方形与原来长方形重叠部分的面积为24?
HC
DG
AB
(第18题)
四、(每题6分,共18分)
20、△ABC在网格中如图所示,请根据下列提示作图 (1)向上平移2个单位长度。 (2)再向右移3个单位长度。
A
C
21、如图,选择适当的方向击打白球,可使白球反弹后将红球撞入袋中。此时,∠1=∠2,∠3=∠4,如果红球与洞口的连线与台球桌面边缘的夹角∠5=30°,那么∠1等于多少度时,才能保证红球能直接入袋?
22、把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M 、N的位置上, 若∠EFG=55°,求∠1和∠2的度数。
E DA
1
2
BC N
五、(第23题9分,第24题10分,共19分)
23、如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,那么DF∥AC,请完成它成立的理由
∵∠1=∠2,∠2=∠3 ,∠1=∠4( )
D∴∠3=∠4( )
∴________∥_______ ( )
∴∠C=∠ABD( )
∵∠C=∠D( ) A∴∠D=∠ABD( ) ∴DF∥AC( )
24、如图,DO平分∠AOC,OE平分∠BOC,若OA⊥OB, (1)当∠BOC=30°,∠DOE=_______________ 当∠BOC=60°,∠DOE=_______________
(2)通过上面的计算,猜想∠DOE的度数与∠AOB
有什么关系,并说明理由。
E
F1
3
第19题)
ADOBEC
七年级数学第六章《实数》测试卷
一、选择题(每小题3分,共30分)
1、下列说法不正确的是( ) A、
125
的平方根是
15
B、-9是81的一个平方根
C、0.2的算术平方根是0.04 D、-27的立方根是-3 2、若a的算术平方根有意义,则a的取值范围是( ) A、一切数 B、正数 C、非负数 D、非零数 3、若x是9的算术平方根,则x是( )
A、3 B、-3 C、9 D、81 4、在下列各式中正确的是( )
A、(2)2
=-2 B
、=3 C、=8 D、22
=2
5、估计76的值在哪两个整数之间( )
A、75和77 B、6和7 C、7和8 D、8和9 6、下列各组数中,互为相反数的组是( ) A、-2与(2)2
B、-2和8 C、-12
与2 D、︱-2︱和2
7、在-2,4,2,3.14,
27,
5
,这6个数中,无理数共有( ) A、4个 B、3个 C、2个 D、1个 8、下列说法正确的是( )
A、数轴上的点与有理数一一对应 B、数轴上的点与无理数一一对应 C、数轴上的点与整数一一对应 D、数轴上的点与实数一一对应 9、以下不能构成三角形边长的数组是( )
A、1,,2 B、3,4,5 C、3,4,5 D、32,42,52
10、若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则b2
-︱a-b︱等于(A、a B、-a C、2b+a D、2b-a
二、填空题(每小题3分,共18分)
11、81的平方根是__________,1.44的算术平方根是__________。 12、一个数的算术平方根等于它本身,则这个数应是__________。 13、8的绝对值是__________。 14、比较大小:27____42。【人教版初一数学各章试题及答案】
15、若25.36=5.036,253.6=15.906,则253600=__________。 16、若的整数部分为a,小数部分为b,则a=________,b=_______。
)
七年级数学第五章《相交线与平行线》测试卷
班级 _______ 姓名 ________ 成绩 _______
一、选择题(每小题3分,共 30 分)
1、如图所示,∠1和∠2是对顶角的是( )
A
1
B
1
C1
D
1
2
A
2、如图AB∥CD可以得到( )
A、∠1=∠2 B、∠2=∠3 C、∠1=∠4 D、∠3=∠4 3、直线AB、CD、EF相交于O,则∠1+∠2+∠3=( ) A、90° B、120° C、180° D、140° 4、如图所示,直线a 、b被直线c所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a∥b的条件的序号是( )
A、①② B、①③ C、①④ D、③④
5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A、第一次左拐30°,第二次右拐30° B、第一次右拐50°,第二次左拐130° C、第一次右拐50°,第二次右拐130° D、第一次向左拐50°,第二次向左拐130° 6、下列哪个图形是由左图平移得到的( )
3
D
B
13
2
2367
ba
(第4题)
D
B
D
C
7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD面积的比是( )
ABA、3:4 B、5:8 C、9:16 D、1:2
(第7题)
8、下列现象属于平移的是( )
① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走
A、③ B、②③ C、①②④ D、①②⑤ 9、下列说法正确的是( )
BAA、有且只有一条直线与已知直线平行
B、垂直于同一条直线的两条直线互相垂直 EC、从直线外一点到这条直线的垂线段,叫做这点到这
CD条直线的距离。 (第10题)
D、在平面内过一点有且只有一条直线与已知直线垂直。 10、直线AB∥CD,∠B=23°,∠D=42°,则∠E=( )
A、23° B、42° C、65° D、19°
二、填空题(本大题共6小题,每小题3分,共18分)【人教版初一数学各章试题及答案】
11、直线AB、CD相交于点O,若∠AOC=100°,则 ∠AOD=___________。
12、若AB∥CD,AB∥EF,则CD_______EF,其理由 是_______________________。
13、如图,在正方体中,与线段AB平行的线段有______ ____________________。
14、奥运会上,跳水运动员入水时,形成的水花是评委 评分的一个标准,如图所示为一跳水运动员的入水前的 路线示意图。按这样的路线入水时,形成的水花很大, 请你画图示意运动员如何入水才能减小水花?
15、把命题“等角的补角相等”写成“如果……那么……” 的形式是:_________________________。
16、如果两条平行线被第三条直线所截,一对同旁内角的 度数之比是2:7,那么这两个角分别是_______。
E
F
H
A
GB
第13题
(第14题)
三 、(每题5分,共15分)
M
17、如图所示,直线AB∥CD,∠1=75°,求∠2的度数。
1
AB
CD N第17题 18、如图,直线AB 、CD相交于O,OD平分∠AOF,OE⊥CD于点O,∠1=50°,求∠COB 、
F∠BOF的度数。
D
O
BA 1
(第18题)
E
19、如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/S的速度沿着A→B方向移动,则经过多长时间,平移后的长方形与原来长方形重叠部分的面积为24? HC
DG
AB
(第18题)
四、(每题6分,共18分)
20、△ABC在网格中如图所示,请根据下列提示作图 (1)向上平移2个单位长度。 (2)再向右移3个单位长度。
A
BC
21、如图,选择适当的方向击打白球,可使白球反弹后将红球撞入袋中。此时,∠1=∠2,∠3=∠4,如果红球与洞口的连线与台球桌面边缘的夹角∠5=30°,那么∠1等于多少度时,才能保证红球能直接入袋?
22、把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M 、N的位置上,若∠EFG=55°,求∠1和∠2的度数。
E DA
1
2
BC
N
五、(第23题9分,第24题10分,共19分)
23、如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,那么DF∥AC,请完成它成立的理由
FDE
∵∠1=∠2,∠2=∠3 ,∠1=∠4( )
1
∴∠3=∠4( )
3∴________∥_______ ( )
∴∠C=∠ABD( ) A
∵∠C=∠D( ) ∴∠D=∠ABD( ) ∴DF∥AC( ) 24、如图,DO平分∠AOC,OE平分∠BOC,若OA⊥OB, (1)当∠BOC=30°,∠DOE=_______________ 当∠BOC=60°,∠DOE=_______________ (2)通过上面的计算,猜想∠DOE的度数与∠AOB 有什么关系,并说明理由。
A
D
O
EC
B
七年级数学第七章《平面直角坐标系》测试卷
班级 _______ 姓名 ________ 成绩 _______
一、选择题(每小题3分,共 30 分)
1、根据下列表述,能确定位置的是( )
A、红星电影院2排 B、北京市四环路 C、北偏东30° D、东经118°,北纬40° 2、若点A(m,n)在第三象限,则点B(|m|,n)所在的象限是( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 3、若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为( ) A、(3,3) B、(-3,3) C、(-3,-3)D、(3,-3) 4、点P(x,y),且xy<0,则点P在( ) A、第一象限或第二象限 B、第一象限或第三象限 C、第一象限或第四象限 D、第二象限或第四象限
5、如图1,与图1中的三角形相比,图2中的三角形发生
的变化是( )
A、向左平移3个单位长度 B、向左平移1个单位长度 C、向上平移3个单位长度 D、向下平移1个单位长度 6、如图3所示的象棋盘上,若○帅位于点(1,-2)上,○相位
于点(3,-2)上,则○炮位于点( )
A、(1,-2) B、(-2,1) C、(-2,2) D、(2,-2) 7、若点M(x,y)的坐标满足x+y=0,则点M位于( ) 图3A、第二象限 B、第一、三象限的夹角平分线上 C、第四象限 D、第二、四象限的夹角平分线上
8、将△ABC的三个顶点的横坐标都加上-1,纵坐标不变,则所得图形与原图形的关系是( )
A、将原图形向x轴的正方向平移了1个单位 B、将原图形向x轴的负方向平移了1个单位 C、将原图形向y轴的正方向平移了1个单位 D、将原图形向y轴的负方向平移了1个单位 9、在坐标系中,已知A(2,0),B(-3,-4),C(0,0),则△ABC的面积为( ) A、4 B、6 C、8 D、3
10、点P(x-1,x+1)不可能在( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
二、填空题(每小题3分,共18分)
11、已知点A在x轴上方,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是______________。
12、已知点A(-1,b+2)在坐标轴上,则b=________。
13、如果点M(a+b,ab)在第二象限,那么点N(a,b)在第________象限。 14、已知点P(x,y)在第四象限,且|x|=3,|y|=5,则点P
15、已知点A(-4,a),B(-2,b)都在第三象限的角平分
上一篇:新标准初中英语单词默写
下一篇:七年级英语短文填空