初一数学应用题大全

| 初一 |

【www.guakaob.com--初一】

初一数学应用题大全(一)
初一行程问题应用题(一元一次方程)

  (一)行程问题:
  (1)行程问题中的三个基本量及其关系:路程=速度×时间S=vt
  (2)基本类型有① 相遇问题;② 追及问题;
  常见的还有:相背而行;行船问题;环形跑道问题。
  (3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行程问题。
  例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
  (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?
  (2)两车同时开出,相背而行多少小时后两车相距600公里?
  (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
  (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
  (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)

初一数学应用题大全(二)
初一数学上册应用题大全

初一数学上册应用题大全

1.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?

2.某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?

3.现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?

4.甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/

5.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间各多少人?

6.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距

36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?

7.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,二 车 的 速度不变,求甲、乙两车的速度。

8.两根同样长的蜡烛, 粗的可燃3小时,细的可燃8 / 3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间,设停电的时间是X

9.某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下 半 年减少15%,问今年下半年生产了多少

10.甲骑自行车从A地到B地,乙骑自行车从B地到A地两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?

11.跑得快的马每天走240里,跑得慢的马每天走150里。慢马先走12天,快马几天可以追上慢马?

12.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品。

13.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?14.要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?

15.一大桥总长1000米,一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上时间为40秒,求火车速度和长度. 16.某车间每个工人能生产12个螺栓或18个螺母,每个螺栓要有两个螺母配套,现有共人28人,怎样分配工人数,才能使每天产量刚好配套?

17.在若干个小方格中放糖,第1格1粒,第2格2粒,第3格4粒,第4格8粒……如此类推,从几格开始的连续三个中共有448粒?

18.要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?

19.有30位游客,其中10人既不懂汉语又不懂英语,懂英语得比懂汉语的3倍多3人,问懂英语的而不懂汉语 的有几人?

20.商店出售两套衣服,每套售价135元,按成本算,其中一套盈利25%,一套 亏25%,两套合计盈还是亏

21.一种饮用水的圆柱形水桶的内直径为25厘米,内壁高为35厘米,有一种内径为6厘米,内壁高为10厘米的玻璃杯,若把一桶饮用水分盛于这种玻璃杯,需要几个玻璃杯?

22.请两名工人制作广告牌,一只师傅单独做需4天完成,徒弟单独做需6天完成,现在徒弟先做1天,再两人合作,完成后共的报酬450元,如果按各人完成工作量计算报酬,那么该如何分配?

23.某食堂第二季度一共节约煤3700kg,其中五月份比四月份多节约20%,六月份比五月份多节约25%,该食堂六月份节约煤多少千克?

24.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?

25.一支队伍长450m,以90m/分的速度前进,一人从排头到排尾取东西,立即返回,他的速度是队伍的2 倍,此人往返共用多长时间?

26.上周,妈妈在超市用36元买了若干盒牛奶。今天,她又来到这家超市,发现上次买的牛奶每盒让利0.3元销售。于是妈妈便又花了36元买了这种牛奶,结果发现比原来多买4盒。原来这种牛奶的销售价是多少元?

27.甲,乙两人在一条长400米的环形跑道上跑步,甲的速度是360米/

分,乙的速度是240米/分. (1)两人同时同地同向跑,问第一次相遇时,两人一共跑了几圈? (2)两人同时同地同向跑,问几秒后两人第一次相遇时?

28.甲、乙两列火车相向而行,甲列车每小时行驶60千米,车长150米;乙列车每小时行驶75千米,车长120米。两车从车头相遇到车尾相离需多少时间?

29.高速公路上,一两长4米速度为110千米/小时的轿车准备超越一辆12米,速度为100千米/小时的卡车,则轿车从开始追悼卡车,需要花费的时间是多少秒?(精确到1秒)

30.汽车以每小时72千米的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4秒钟后听到回声,这时汽车离山谷多远?(声音的传播速度为每秒340米)

31.一次数学测验,试卷由25道选择题组成,评分标准规定:选对一道得4分,不选或错选扣一道一分,小蓝最后得了85分,问他答对了多少到题?

32.在一个底面直径5cm、高18cm的圆柱形瓶内装满水。再将瓶的水倒入一个底面直径6cm、高10cm的圆柱形玻璃瓶内装满水,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。

33.某班有45人,会下象棋的人数是会下围棋的3.5倍2种都会或都不会的都是5人,求只会下围棋的人数。

34.一份试卷共有25道题,每道题都给出了4个答案,每道题选对得4分,不选或选错扣1分,甲同学说他得了71分,乙同学说他得了62分,丙同学说他得了95分,你认为哪个同学说得对?请说明理由。

35.某水果批发市场香蕉的价格如下购买香蕉数不超过20kg以上但不超过40kg以上每千克价格6RMB 5RMB 4RMB张强两次购买香蕉50kg(第二次多于第一次),共付出264元,请问张强第一次,第二次分别买香蕉多少千克?

初一数学应用题大全(三)
中考数学应用题(各类应用题汇总练习)

中 考 应 用 题

列方程(组)解应用题是中考的必考内容,必是中考的热点考题之一,列方程(组)解应用题的关键与难点是如何找到能够表示题目全部含义的相等关系,所谓“能表示全部含义”就是指在相等关系中,题目所给出的全部条件(包括所求的量)都要给予充分利用,不能漏掉,但也不能把同一条件重复使用,应用题中的相等关系通常有两种,一种是通过题目的一些关键词语表现出来的明显的相等关系,如“多” 、“少” 、“增加” 、“减少” 、“快” 、“慢”等,另一种是题目中没有明显给出而题意中又包含着的隐含相等关系,这也是中考的重点和难点,此时需全面深入的理解题意,结合日常生活常识和自然科学知识才能做到.

解应用题的一般步骤:

解应用题的一般步骤可以归结为:“审、设、列、解、验、答” .

1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意.

2、“设”是指设元,也就是未知数.包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目).

3、“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.

4、“解”就是解方程,求出未知数的值.

5、“验”就是验解,即检验方程的解能否保证实际问题有意义.

6、“答”就是写出答案(包括单位名称).

应用题类型:

近年全国各地的中考题中涉及的应用题类型主要有:行程问题,工程问题,增产率问题,百分比浓度问题,和差倍分问题,与函数综合类问题,市场经济问题等.

几种常见类型和等量关系如下:

1、行程问题:

基本量之间的关系:路程=速度³时间,即:svt.

常见等量关系:

(1)相遇问题:甲走的路程+乙走的路程=原来甲、乙相距的路程.

(2)追及问题(设甲速度快):

①同时不同地:

甲用的时间=乙用的时间;

甲走的路程-乙走的路程=原来甲、乙相距的路程.

②同地不同时:

甲用的时间=乙用的时间-时间差;

甲走的路程=乙走的路程.

2、工程问题:

基本量之间的关系:工作量=工作效率³工作时间.

常见等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量.

3、增长率问题:

基本量之间的关系:现产量=原产量³(1+增长率).

4、百分比浓度问题:

基本量之间的关系:溶质=溶液³浓度.

5、水中航行问题:

基本量之间的关系:顺流速度=船在静水中速度+水流速度;

逆流速度=船在静水中速度-水流速度.

6、市场经济问题:

基本量之间的关系:商品利润=售价-进价;

商品利润率=利润÷进价;

利息=本金³利率³期数;

本息和=本金+本金³利率³期数.

一元一次方程方程应用题归类分析

列方程解应用题,是初中数学的重要内容之一。许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.

1. 和、差、倍、分问题:

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率„„”来体现。

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余„„”来体现。

例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?

分析:等量关系为:

解:设1990年6月底每10万人中约有x人具有小学文化程度

x37057

答:略.

2. 等积变形问题:

“等积变形”是以形状改变而体积不变为前提。常用等量关系为:

①形状面积变了,周长没变;

②原料体积=成品体积。

例2. 用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为125125mm内高为81mm的长方体铁盒倒水时,2.1366%90年6月底有的人数2000年11月1日人数(1366%).x35701

.) 玻璃杯中的水的高度下降多少mm?(结果保留整数314

分析:等量关系为:圆柱形玻璃杯体积=长方体铁盒的体积

下降的高度就是倒出水的高度

解:设玻璃杯中的水高下降xmm 90²x125125812 x625

625x199

3. 劳力调配问题:

这类问题要搞清人数的变化,常见题型有:

(1)既有调入又有调出;

(2)只有调入没有调出,调入部分变化,其余不变;

(3)只有调出没有调入,调出部分变化,其余不变。

例3. 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

2 解:设分别安排x名、

85x名工人加工大、小齿轮 3(16x)2[10(85x)] 48x170020x

68x1700

x25

85x60人

4. 比例分配问题:

这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。

常用等量关系:各部分之和=总量。

例4. 三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几?

解:设一份为x,则三个数分别为x,2x,4x

分析:等量关系:三个数的和是84

x2x4x84

5. 数字问题

(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c。

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2n+2【初一数学应用题大全】

或2n—2表示;奇数用2n+1或2n—1表示。

例5. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数

大36,求原来的两位数

等量关系:原两位数+36=对调后新两位数

x12

解:设十位上的数字X,则个位上的数是2x,

10³2x+x=(10x+2x)+36解得x=4,2x=8.

答:略.

6. 工程问题:

工程问题中的三个量及其关系为:工作总量=工作效率³工作时间

经常在题目中未给出工作总量时,设工作总量为单位1。

例6. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙

单独完成,问乙还要几天才能完成全部工程?

分析设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。

11x11x 解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,()³3+, 解这个方程,+=1 1512125412

33312+15+5x=60 5x=33 ∴ x= 55

答:略.

7. 行程问题:

(1)行程问题中的三个基本量及其关系: 路程=速度³时间。

(2)基本类型有

① 相遇问题;② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。

(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常

常借助画草图来分析,理解行程问题。

例7. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140

公里。

(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?

(2)两车同时开出,相背而行多少小时后两车相距600公里?

(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?

(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?

(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?

此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。 (1)分析:相遇问题,画图表示为:

等量关系是:两车所走的路程和+480公里=600公里。

解:设x小时后两车相距600公里,

由题意得,(140+90)x+480=600解这个方程,230x=120

12∴ x= 23

答:略.

(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。 解:设x小时后两车相距600公里,由题意得,(140-90)x+480=600 50x=120 ∴ x=2.4

答:略.

分析:追及问题,画图表示为: 甲 乙 等量关系是:慢车走的路程+快车走的路程=480公里。 解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480 解这个方程,230x=390 16∴ 23答:略. 分析:相背而行,画图表示为: 甲 乙

甲 乙

等量关系为:快车的路程=慢车走的路程+480公里。

解:设x小时后快车追上慢车。

由题意得,140x=90x+480

解这个方程,50x=480 ∴ x=9.6【初一数学应用题大全】

答:略.

分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。

解:设快车开出x小时后追上慢车。由题意得,140x=90(x+1)+480

50x=570 解得, x=11.4

答:略. 8. 利润赢亏问题

(1)销售问题中常出现的量有:进价、售价、标价、利润等

(2)有关关系式:

商品利润=商品售价—商品进价=商品标价³折扣率—商品进价

商品利润率=商品利润/商品进价

商品售价=商品标价³折扣率

例8. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

解:设进价为X元,80%X(1+40%)—X=15,X=125

答:略.

9. 储蓄问题

⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税

⑵ 利息=本金³利率³期数

本息和=本金+利息

利息税=利息³税率(20%)

例9. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)

分析:等量关系:本息和=本金³(1+利率)

解:设半年期的实际利率为x,

250(1+x)=252.7,

x=0.0108

所以年利率为0.0108³2=0.0216

1.“今有鸡、兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.题目大意:在现有鸡、兔在同一个笼子里,上边数有35个头,下边数有94只脚,求鸡、兔各有多少只.

解:设有x只鸡,y只兔子,由题意得

xy35,x23, 解得2x4y94,y12.

2.《希腊文集》中有一些用童话形式写成的数学题.比如驴和骡子驮货物这道题,就曾经被大数学家欧拉改编过,题目

是这样的:驴和骡子驮着货物并排走在路上,驴不住地埋怨自己驮的货物太重,压得受不了.骡子对驴说:“你发什么牢骚啊!我驮的货物比你重,假若你的货物给我一口袋,我驮上的货就比你驮的重一倍,而我若给你一口袋,咱俩驮的才一样多.”那么驴和骡子各驮几口袋货物?你能用方程组来解这个问题吗?

解:设驴子驮x袋,骡子驮y袋,

y12(x1),x5, 根据题意,得 解得y1x1.y7.

◆规律方法应用

3.戴着红凉帽的若干女生与戴着白凉帽的若干男生同租一游船在公园划船,一女生说:“我看到船上红、白两种帽子一

样多.”一男生说:“我看到的红帽子是白帽子的2倍”.请问:该船上男、女生各几人?

解:设女生x人,男生y人,由题意得

yx1,x4, 解得2(y1)x,y3.

4.有一头狮子和一只老虎在平原上决斗,争夺王位,•最后一项是进行百米来回赛跑(合计200m),谁赢谁为王.已知

每跨一步,老虎为3m,狮子为2m,•这种步幅到最后不变,若狮子每跨3步,老虎只跨2步,那么这场比赛结果如何? 解:∵老虎跨2步6m,狮子跨3步6m,在折返点老虎多跨一步,∴狮子胜.

5.某公司的门票价格规定如下表所列,某校七年级(1),(2)两个班共104人去游公园,其中(1)班人数较少,不到

50人,(2)班人数较多,有50多人.经估算,如果两班都以班为单位分别购票,则一共应付1 240元;如果两班联合起来,作为一个团体购票,•则可以节省不少钱,则两班各有多少名学生?

解:设七年级(1)班有x名学生,七年级(2)班有y名学生,

根据题意可列

◆中考真题实战 xy104,x48, 解这个方程组,得13x11y1240.y56.

6.(吉林)随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展,某地区2003年和2004年小

学入学儿童人数之比为8:7,且2003•年入学人数的2倍比2004年入学人数的3倍少1 500•人,•某人估计2005•年入学儿童人数将超过2300人,请你通过计算,判断他的估计是否符合当前的变化趋势.

解:设2003年入学儿童人数为x人,2004年入学儿童人数为y人,

7x8y,x2400,则可列 解得

2x3y1500,y2100.

∵2 300>2 100,

∴他的估计不符合当前入学儿童逐渐减少的趋势

一元一次不等式组及其应用

1.(2004,湖北省)如图所示,一筐橘子分给若干个儿童,如果每人分4个,•则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,•分了多少个橘子?.

1.设共有x个儿童,则共有(4x+9)个橘子,依题意,得0≤4x+9-6(x-1)<3

解这个不等式组,得6<x≤7.5. 因为x为整数,所以x取7.

所以4x+9=4³7+9=37. 故共有7个儿童,分了37个橘子.

2.(2005,江苏省)七(2)班有50名学生,老师安排每人制作一件A型和B型的陶艺品,学校现有甲种制作材料36kg,

初一数学应用题大全(四)
七年级数学应用题大全(60) 2

七年级数学应用题(60题)

1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?

2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?

3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?

4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?

5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?

6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?

7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?

8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?

9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?

10、一块三角形地的面积是840平方米,底是140米,高是多少米?

11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?

12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?【初一数学应用题大全】

13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?

14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?

15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?

16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。

17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?

18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?

19.如果三个连续整数之和为33,那么这三个整数各为多少?

20. 如果三个连续奇数之和为21,那么其中最小的奇数时多少?

21. 一个长方形的周长为36cm,若长减少4cm,宽增加2cm,长方形就变成了正方形,原长方形的长为多少?

22. 把一段铁丝围成长方形,可以使他的长比宽多2厘米,如果围成正方形,边长刚好为5厘米,求所围成的长方形的长和宽各为多少厘米?

23. 某商场有一种电视机,每台的原价为2500元,现以八折销售,如果想使降价前后的销售额都为10万元,那么销售额应增加多少?

24. 新华书店一天内销售两种书籍,甲种书籍共卖得1560元。为了发展农业科技,乙种书籍送下乡共卖得1350元,若按甲乙两种书的成本分别计算,甲种书盈利25%,乙种书亏本10%,试问该书店这一天共盈利(或亏本)多少元?

25. 某书店将一种裤子按成本价提高50%后标价,又以8折优惠卖出,结果每条裤子获利10元,这种裤子的成本是多少元?

26. 某商场鞋帽部经理让售货员小王给新到的一批皮鞋定标价,他说:“这批鞋每双的进价为200元,咱们按标价的8折出售,利润率为20%”你能帮小王确定每双皮鞋的标价吗?

27. 某企业生产一种产品,每件成本价是400元,销售价是510元,本季度销售了1000件,为进一步扩大市场,该企业决定在降低销售价的同时降低生产成本。经过市场调研,预测下季度这种产品每件销售价降低4%,销售量将提高10%。要使销售利润保持不变,该产品每件的成本价应降低多少元?

28. 某商店选用两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果出售,现要配制这种杂拌糖果100千克,并且使它的售价为每千克25元,需要这两种糖果各多少千克?

29.某校现有校舍20000平方米,计划拆除部分旧校舍,建设新校舍,且新建校舍的面积比拆除的面积的4倍多2000平方米。若果要使建设后校舍总面积比现有校舍面积增加40%,问要拆除多少旧校舍,建多少新校舍?

30. 有一艘轮船,载重量是800吨,容积是750立方米,现在要装运生铁和棉花两种物资,生铁每吨体积是0.3立方米,棉花每吨体积是4立方米,请你帮船长设计一下,怎样装运才能充分利用船的载重量和容积?

31. 某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费,如果用量超过60立方米,超过部分按每立方米1.2元收费,已知某用户10月份煤气费平均每立方米0.88元,求该用户10月份应交的煤气费。

32.一列匀速前进的火车用15秒的时间通过了一个长300米的隧道(即从车头进入隧道到车尾离开隧道)。又知其间在隧道顶部的一盏固定的灯发出的一束光垂直照射火车2.5秒,

1)求这列火车的长度

2)如果这列火车用25秒的时间通过了另一个隧道,求这个隧道的长

33. 小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米,(1)如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?(2)如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?

34. 一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,直到与其他队员会合。1号队员从利队开始到与其他队员重新会合,经过了多长时间?

初一数学应用题大全(五)
初中数学应用题知识点总结及练习

一、列方程(组)解应用题 ㈠概述

列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:

⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。 ⑵设元(未知数)。①直接未知数②间接未知数(二者兼用)。一般来说,未知数越多,方程越易列,但越难解。 ⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。⑸解方程及检验。⑹答案。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

㈡常用的相等关系 1. 行程问题(匀速运动)基本关系:s=vt 相遇处 ←乙 甲→

⑴相遇问题(同时出发):s甲+s乙=sAB;t甲t乙

⑵追及问题(同时出发):s甲sACs乙;t甲(AB)t乙(CB)

若甲出发t小时后,乙才出发,而后在B处追上甲,则s甲s乙;t甲tt乙

⑶水中航行:v顺船速水速;v逆船速水速 3.增长率问题:ana1(1r)n1

4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。 ㈢注意语言与解析式的互化 如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、„„

又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。 ㈣注意从语言叙述中写出相等关系。

如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。 ㈤注意单位换算 1

甲→ (乙→

乙→ (相遇处)

(相遇处)

1

为吸引游客,团体入住五折优惠措施,一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间

客房.若每间客房正好住满,•且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间? 2、(2004、湟中,3分)正在修建的西塔(西宁~塔尔寺)高速公路上,有一段工程,若甲、乙两个工程队单独完成,甲工程队比乙工程队少用10天;若甲、乙两队合作,12天可以完成.若设甲单独完成这项工程需要x天.则根据题意,可列方程为_______________。

1、甲、乙两地相距200千米,一艘轮船从甲地逆流航行至乙地,然后又从乙地返回甲地,已知水流的速度为4千米/3

【初一数学应用题大全】

时,回来时所用的时间是去时的,求轮船在静水中的速度.

4

2、(2005、南充,8分)某车间要加工170个零件,在加工完90个以后改进了操作方法,每天多加工10个,一共用 5天完成了任务.求改进操作方法后每天加工的零件个数. 4、(2004、海口,8分)某水果批发商场经销一种高档水果 如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?

5、某书店老板去批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,并很快售完.由于该书畅4

销,第二次购书时,每本的批发价比第一次高0.5元,用去了150元,所购书数量比第一次多10本,当这批书售出5时,出现滞销,便以定价的5折售完剩余的图书.试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其他因素片若赔钱,赔多少?若赚钱,赚多少? 2、(2005、南昌,3分)如图1-2-3为长方形时钟钟面示意图,时钟的中心在长方形对角线的交点上,长方形的宽为20厘米,钟面数字2在长方形的顶点处,则长方形的长为_________厘米.

二:经典例题

例1.1甲、乙二人同时从A地前往距A地30千米的B地,甲比乙每小时快2千米,结果比乙先到半小时,若设乙的速度为x千米/小时,则可列出的方程为

A.

2

30301303013030130301 B. C. D. xx22xx22x2x2x2x2

例1.2某校学生进行急行军,预计行60千米的路程可在下午5点钟到达,后来由于每小时加快速度的

1

,结果于5

4点钟到达,这时的速度是多少?

例2.1甲、乙两人合做某项工作,如果先由两人合作3天,剩下的由乙单独来做,那么再有1天便可完成. 已知乙单独做全部工作所需天数是单独做所需天数的2倍. 求甲、乙单独做这项工作各需多少天?

11)1 2x2x

解这个方程,得 x5 经检验知x5是原方程的解. ∴ 2x10.

解答 设甲单独做需x天,则乙单独做需2x天,依题意,得 3(

说明 工作总量看做1的工程问题,通常以工作总量为相等关系.

例2.2某工人现在平均每天比计划多做20个零件,已知现在做4000个 零件和原计划做3000个零件所用的时间相同,问现在平均每天做多少个?

解答 设现在每天生产x个零件,计划每天生产(x20)个零件,依题意,得

1x

40003000

去分母,整理得1000x80000∴ x80经检验 x80是原方程的解. xx20

说明 总工作量不是1的工程问题已知总工作量,求工作效率,通常以时间为等量关系.

例1.3 A、B两地相距7千米,甲由A地走向B地,刚走完了1千米到达C,在A地的乙发现甲有物遗忘,为送物追甲,乙在D处追上甲后又立即返回,当乙回到A地时,甲正好到了B地,求C、D间的距离.

解答一 设甲的速度是每小时x千米,乙的速度是每小时y千米,又设CD的距离是s千米,依题意,得

sx1xy,

两式相除,消去x、y,得s3. 

62(s1)yx

解答二 设甲的速度是每小时x千米,乙的速度是每小时y千米,又设CD的距离是s千米,于是得方程组

ss1

xy,

两式相除,消去x、y,得s3. 

6ss1.yx

解答三 设CD的距离s,于是得2s17.解得s3.

例2.3甲、乙二人做某种机器零件,已知甲每小时比乙多做2个,甲做10个所用的时间与乙做6个所用时间相等. 求,甲、乙每小时各做多少个?

解:设甲每小时做x个,则乙每小时做(x2)个 根据题意,得

106 xx2

整理,得 10x206x ∴ x5 经检验x5是方程的根.

例3.1某工厂去年赢利25万元,按计划这笔赢利额应是去、今两年赢利总额的20%,今年的赢利额应是多少? 2、某工厂去年赢利25万元,按计划这笔赢利额应是去、今两年赢利总额的20%,今年的赢利额应是多少? 3、某商品的标价比成本高p%,当该商品降价出售,为了不亏本,降价幅度不得超过d%,请用p表示d。

3

4、(2006年怀化市)放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,图(1)、图(2)分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了________千克.” 8、(2006年贵阳市)小明根据邻居家的故事写了一道小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y•表示父亲与儿子行进中离家的距离,用横轴x表示父亲离家的时间,•那么下面的图象与上述诗的含义大致吻合的是( ) 1、(2006年南京市)某块试验田里的农作物每天的需水量y(千克)与生长时间x(天)之间的关系如折线图所示.•这些农作物在第10•天、•第30•天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.

(1)分别求出x≤40和x≥40时y与x之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000千克时,需要进行人工灌溉,•那么应从第几天开始进行人工灌溉? 2、(2006年吉林省)小明受《乌鸦喝水》故事的启发,• 利用量筒和体积相同的小球进行了如下操作: 请根据图中给出的信息,解答下列问题: (1)放入一个小球量筒中水面升高_______cm;

(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)•之间的一次函数关系式(不要求写出自变量的取值范围);

(3)量筒中至少放入几个小球时有水溢出?

1、某厂从2002年起开始投入技术改进资金,经技术改进后,•某产品的生产成本不断降低,具体数据如下表:

(1说明确定是这种函数而不是其他函数的理由,并求出它的解析式; (2)按照这种变化规律,若2006年已投入技改资金5万元. ①预计生产成本每件比2005年降低多少万元?

②如果打算在2006年把每件产品成本降低到3.2万元,还需投入技改资金多少万元?(结果精确到0.01万元)

4

初一数学应用题大全(六)
初一上数学应用题复习(题型大全用心收集的)

一元一次方程应用题归类汇集:

(一)行程问题:

1.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。

2.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。

【初一数学应用题大全】

3. 某人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?

4.在800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于 分钟.

5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?

6.与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6Km,骑自行车的人的速度是每小时10.8Km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车人的时间是26秒。

(1)行人的速度为每秒多少米;(2)求这列火车的身长是多少米。

7.休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?

8.一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度60公里/小时,我们的速度是5公里/小时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行这部分人。出发地到目的地的距离是60公里。问:步行者在出发后经多少时间与回头接他们的汽车相遇 (汽车掉头的时间忽略不计)?

时钟问题:

10.在6点和7点间,何时时钟分针和时针重合?(教材复习题)

行船问题:

12. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?

13.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。

(二)工程问题:

1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?

2.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?

3.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;

(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?

(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?

(3)如果将两管同时打开,每小时的效果如何?如何列式?

(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?

4.有一个水池,用两个水管注水。如果单开甲管,2小时30分注满水池,如果单开

乙管,5小时注满水池。

① 如果甲、乙两管先同时注水20分钟,然后由乙单独注水。问还需要多少时间才能把

水池注满?

② 假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。如果三

管同时开放,多少小时才能把一空池注满水?

一条铁路,甲队单独修5天完成总工程量的 ,乙队单独修6天完成总工程量的 。两队合修,需要多少天完成?

甲、乙两个打字员合打一份稿件,完成时,甲打了这份稿件的 。甲单独打8小时完成这份稿件,乙单独打几小时完成?

一项工程,甲队独做要120天完成,如果甲队先做10天,乙队再做5天,就可以完成这项工程的 ,乙队单独做这项工程需要多少天?

一项工程,甲队独做要8天完成,乙队独做所需时间是甲的 。甲队做一天后,乙队参加一起做,还需要几天才能完成?

一项工程,如果甲队独做,可6天完成,甲队3天的工作,乙要4天完成,两队合做了2天后由乙队独做,乙队还需要多少天才能完成?

一项工程,甲队单独做需30天完成,乙队单独做需要40天完天,甲队先做若干天后,由乙队接着做,共用35天完成了任务,甲、乙两队各做了几天?

加工一批零件,甲单独做要6天完成,乙单独做要5天完成,现在甲、乙、丙、丁四人合做一天就完成了任务。已知丙、丁两人比甲、乙两人多做48个。这批零件一共有多少个?

一项工程,由甲、乙两队合做需要5 天完成,由乙、丙两队合做需要6天完成,由甲、丙两队合做需要6 天完成,现在由甲、乙、丙三队合做,需要几天完成? 修一条公路,甲队单独修20天可以修完,乙队单独修30天可以修完,现在两队合修,中途甲休息2.5天,乙队休息若干天,这样一来14天才修完,乙队休息了几天?

一项工程,甲队单独做要20天完成,乙队单独做要12天完成,已知这项工程先由甲队做了若干天后,然后由乙队继续完成,从开始到完成共用了14天,那么甲队先做了多少天?乙队又做了多少天?

有一个水池,单开甲管1小时可以将水池的水注满,单开乙管40分钟可以将水池的水注满,两管同时开10 分钟后,共注水4 吨,水池能装水多少吨? 一件工作,甲独做15小时完成,乙独做10小时完成。现由两人合做若干小时后,余下的由乙单独做还要5小时才能完成。两人合做了多少小时?

一辆客车和一辆货车同时从甲、乙两站相对开出,经过6小时相遇,相遇后两车各自以原速度继续前进,客车又行了4小时才到达乙地,问:相遇后货车还要行多少小时才能到达甲地?

(三)和差倍分问题(生产、做工等各类问题):

1.整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作。

2.岳池县城某居民小区的水、电、气的价格是: 水每吨1.55元, 电每度0.67元, 天然气每立方米1.47元. 某居民户在2006年11月份支付款67.54元, 其中包括用了5吨水、35度电和一些天然气的费用, 还包括交给物业管理4.00元的服务费. 问该居民户在2006年11月份用子多少立方米天然气?

3.已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.

(1)如果有人乘出租车行驶了x公里(x>2),那么他应付多少车费?(列代数式,不化简)(8分)

(2)某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?

4.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?

5.已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,它每到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?

6.两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。问本月原计划每组各生产多少个零件?

7.某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?

8.为了搞好水利建设,某村计划修建一条长800米,横断面是等腰梯形的水渠.

(1)设计横断面面积为1.6米2,渠深1米,水渠的上口宽比渠底多0.8米,求水渠上口宽和渠底宽;

(2)某施工队承建这项工程,计划在规定的时间内完成,工作4天后,改善了设备,提高了工效,每天比原计划多挖水渠10米,结果比规定的时间提前2天完成任务,求计划完成这项工程需要的天数。

9.今年某校积极组织捐款支援灾区,某班55名同学共捐款500元,捐款情况如下表:

捐款(元) 5 8 10 12

人数 6 ■ ■ 7

表中有两处看不清楚,请你帮助确定表中数据。

比赛积分问题:

10.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了 道题。

11.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?

年龄问题:

12.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________.

13.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄

比例问题:

14.图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。

15.一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?

16.魏老师到市场去买菜,发现若把10千克的菜放到秤上,指针盘上的指针转了180°.如图,第二天魏老师就给同学们出了两个问题:

(1)如果把0.5千克的菜放在秤上,指针转过多少角度?

(2)如果指针转了540,这些菜有多少千克?

(四)调配问题:

1.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?

2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。求甲、乙两队原有人数各多少人?

3.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。

(五)分配问题:

4.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。

5.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?

6.小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。

(六)配套问题:

1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?

2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?

3.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。

4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。

5.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?

(七)增长率问题:

1.某化肥厂去年生产化肥3200吨,今年计划生产3600吨,今年计划比去年增产 %

2.某加工厂有出米率为70%的稻谷加工大米,现在加工大米100公斤,设要这种大米x公斤,则列出的正确的方程是

3.某印刷厂第三季度印刷了科技书籍50万册,而第四季度印刷了58万册,求季度的增长率是多少?

4.甲、乙两厂去年完成任务的112%和110%,共生产机床4000台,比原来两厂任务之和超产400台,问甲厂原来的生产任务是多少台?

5.某村去年种植的油菜籽亩产量达150千克,含油率为40﹪。今年改种新选育的油菜籽后亩产量提高了30千克,含油率提高了10百分点。今年与去年相比,油菜的种植面积减少了40亩,而村榨油厂用本村所产油菜籽的产油量提高了20﹪。(1)求今年油菜的种植面积。

设今年油菜的种植面积是x 亩。完成下表后再列方程解答。

亩产量

(千克/亩) 种植面积

(亩) 油菜籽总产量

(千克) 含油率 产油量

(千克)

去年 150 40﹪

今年 x

(2)已知油菜种植成本为200元/亩,菜油收购价为6元/千克。试比较这个村去今两年种植油菜的纯收入。

本文来源:http://www.guakaob.com/chuzhong/650339.html