【www.guakaob.com--教案】
人教版五年级数学上册多边形的面积电子教案篇一:新人教版数学五年级上册第五单元 多边形的面积教案
个案设计
个案设计 1. 利用割补等方法,探索并掌握平行四边形、三角形和梯形的面积公式,会用
公式计算图形面积。
2. 能综合运用平行四边形、三角形和梯形的面积公式解决组合图形面积以及一些简单的实际问题。
3. 在探索图形面积公式的过程中,渗透转化的数学思想方法,进一步发展学生的空间观念。
4. 能探索解决面积问题的有效方法,感受有些问题解决方法的多样化,表达解决问题的过程,并尝试解释所得结果。
5. 通过观察、操作、归纳、类比等数学活动,感受数学问题的探索性和挑战性,体验公式推导过程的科学性和数学结论的确定性。
三、教学重点、难点
教学重点: 平行四边形、三角形、梯形的面积计算公式。
教学难点:理解三种图形面积公式的推导过程,运用公式解决面积的计算问题。
四、学情分析:
学生已有知识基础:这部分内容是在学生初步掌握了平行四边形、三角形和梯形的特征,长方形、正方形的面积计算方法,以及初步认识图形的平移、旋转等基础上进行教学的。
对后继学习的作用:一是使学生基本掌握多边形面积计算的方法,能相对独立地探索并解决实际生活中与多边形面积计算相关的实际问题;二是为学生进一步探索并掌握其他平面图形的面积计算方法,进一步学习空间与图形领域的其他内容奠定基础。
五、教学措施:
1.注重让学生经历知识的探索过程。
教学时,通过动手操作等活动,突出图形面积计算的探索过程,使学生不仅掌握面积计算的方法,还要学会面积计算公式的推导方法。避免重计算轻认识、重结果轻过程的倾向。只有这样,才能有效地培养学生的分析、判断、推理、抽象、概括能力,发展学生的空间观念。
2.发挥直观操作在探索活动中的作用。
教学时,教师要注重紧密联系学生的生活实际,从学生已有的认知基础和生活经验出发,指导学生利用学具开展操作活动。在操作活动中,学生通过观察、猜想、测量、推理、验证,完成对新知的建构过程。如学习平行四边形、三角形、梯形的面积计算时,通过量、折、剪、拼等操作活动,运用类推、转化等思想方法,探索出图形面积的计算方法,体会知识之间的内在联系。
3.重视多样化的学习,鼓励个性化的思考。
学生的求知欲和好奇心较强,不同的学生认识事物的方法、手段不尽相同。教学时,要重视发展学生的个性。如:在探索平行四边形面积计算时,可给学生充分的时间和空间,进行独立思考,探索计算方法,鼓励解决问题策略的多样化。再引导学生进行交流,学生的思路可能各不相同,可以互相补充,进而培养学生的参与意识和合作意识。
六、课时安排:
共12课时
2
第1课时 平行四边形面积(1)
主备人 吴海鹏
教学内容:教学P79-P81及练习十五的1-3题
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
3.对学生进行辩诈唯物主义观点的启蒙教育。
教学重点:理解公式并正确计算平行四边形的面积。
教学难点:理解平行四边形面积公式的推导过程。
学具准备:每个学生准备一个平行四边形。
教学过程:
一、孕伏新知
1、什么是面积?
2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?
3、导入新课:根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
二、出示目标:
1.在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展空间观念,培养运用转化的思考方法解决问题的能力和逻辑思维能力。
3.初步理解辩诈唯物主义的观点。
三、自主学习
(一)、数方格的方法计算面积
出示方格图
1、 这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2 请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
四、合作探究
3 个案设计
个案设计 学习割补法
1、 这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。) ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
五、精讲点拨
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
1、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
2、教学用字母表示平行四边形的面积公式。
板书:S=a×h,告知S和h的读音。
说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h,或者S=ah。
六、巩固提高
1、学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等” ,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
2、完成第81页中间的“填空”。
3、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等( )
(2)平行四边形底越长,它的面积就越大( )
4、第82页2题。
七、小结体验
4
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
板书设计
平行四边形面积的计算
长方形的面积=长×宽 平行四边形的面积=底×高
S=a×h S=a·h或S=ah
第2课时 平行四边形面积(2)
主备人 吴海鹏
教学内容:平行四边形面积计算的练习 (P82~83页练习十五第4~8题。) 教学目标:
1、进一步理解和掌握平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解决生活中的相关问题,提高学生运用知识解决问题的能力。
2、养成良好的审题习惯。
教学重点:运用所学知识解答生活中的相关问题。
教具准备:长方体木框。
教学过程:
一、基本练习
1、上节课我们学习了平行四边形的计算公式,谁能说说平行四边形的面积是什么?它是怎样推导出来的?
2、口算下面各平行四边形的面积。
(1)底12米,高7米;
(2)高13分米,第6分米;
(3)底2.5厘米,高4厘米
3、填空:
1平方米=( )平方分米 1公顷=( )平方米
150平方厘米=( )平方分米 3.6平方米=( )平方分米
0.54平方分米=( )平方厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(1)生独立列式解答,集体订正。
(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:250×780÷10000=1.95公顷,
再求共收小麦多少千克:7000×1.95=13650千克
(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
5 个案设计
人教版五年级数学上册多边形的面积电子教案篇二:人教版五年级数学上册 第五单元 多边形的面积 教案
第五单元 多边形的面积
本单元教材包括四部分内容:平行四边形的面积、三角形的面积、梯形的面积和组合图形的面积。
单元教学目标:
1、利用方格纸和割补、拼摆等方法 ,探索并掌握平行四边形、三角形和梯形的面积计算公式。会计算平行四边形、三角形和梯形的面积。
2、认识简单的组合图形,会把组合图形分解成已学过的平面图形并计算出它的面积。 教学建议
1. 重视动手操作与实验。
2. 引导学生探究,渗透“转化”思想。
3. 注意培养学生用多种策略解决问题的意识和能力。
4. 本单元可以用9课时进行教学。
第一课时
平行四边形面积的计算
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:理解公式并正确计算平行四边形的面积.
教学难点:通过转化,理解平行四边形面积公式的推导过程.
学具准备:每个学生准备一个平行四边形纸片、剪刀、三角板。
教学过程:
一、复习旧知
1、什么是面积?
2、请同学翻书到80页,观察这两个花坛,说说它们的形状。哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?
二、导入新课
根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。[板书课题]
三、讲授新课
我们在学习长方形、正方形的面积时,学会用数方格的方法得到一个图形的面积。现在请同学们用这种方法算出平行四边形和长方形的面积。不满一格的,都按半格计算。把数出的数据填在80页的表格中,然后指名说出数得的结果,并说一说是怎样数的。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、从上面的表格中,你发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。 那咱们能不能将平行四边形转化成长方形呢?想一想,该怎么做。
学生分小组进行操作活动,交流各自方法。
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。 ③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、引导学生总结平行四边形面积计算公式。
观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长、宽与平行四边形的底、高有什么样的关系?
③这个长方形的面积怎么求?
④平行四边形的面积怎么求?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。[板书:长方形的面积=长×宽;平行四边形的面积=底×高。]
5、教学用字母表示平行四边形的面积公式。
板书:S=a×h,告知S和h的读音。
说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h,或者S=ah。
6、完成第81页中间的“填空”。
7、验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等” ,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
(四)应用
1、学生自学例1后,教师根据学生提出的问题讲解。
2、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等( )
(2)平行四边形底越长,它的面积就越大( )
3、做书上82页2题。
四、体验:今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业:练习十五第1题。
板书设计:
平行四边形面积的计算
长方形的面积=长×宽
平行四边形的面积=底×高
S=a×h
S=a·h或S=ah
教学反思:
前三个单元我一直要求学生每课预习,这种做法使得课堂内教学效率大大提高。但今天的内容我同样布置了预习,效果却不太理想。分析原因可能是预习后学生的动手操作少了一份探索成功后的欣喜,少了一些不同剪拼法的交流,学生积极性不高。针对这种现象,我准备采取两种不同策略进行对比实验。《三角形的面积》我不要求学生预习,上课时根据学生情况灵活调控。梯形的面积我仍旧请同学们预习,但在预习中我布置一项作业,请他们思考,除了教材中的转化方法,你还能将梯形转化成我们已学过的其他平面图形吗?
其次,本课不太成功的原因是今天有近一半的学生没有带学具来,他们无法参与到操作过程之中,影响了教学效果。看来带学具要反复强调,以确保教学活动落实。
内容调整:建议将练习十五第5题调整到今天教学。因为此题不仅可以巩固面积公式,而且还能加深公式的理解与掌握。此题教学完后,可请学生在钉子板上围一个与指定长方形(或平行四边形)面积同样大小的平行四边形。
学情反馈:从学生做练习十五第2题看出许多学生不会作高,要及时查缺补漏。 有学生质疑
这类平行四边形如何将其剪拼成长方形?它的面积是否也等于底乘高?问得好!我想如果人人都会作斜边上的高就好办了。
第二课时
教学内容:平行四边形面积计算的练习 (P82~83页练习十五第4~8题。)
教学要求:
1.进一步理解和掌握平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解决生活中的相关问题,提高学生运用知识解决问题的能力。
2.养成良好的审题习惯。
教学重点:运用所学知识解答生活中的相关问题。
教具准备:长方体木框。
教学过程:
一、基本练习
1、上节课我们学习了平行四边形的计算公式,谁能说说平行四边形的面积是什么?它是怎样推导出来的?
2、口算下面各平行四边形的面积。
(1)底12米,高7米;
(2)高13分米,第6分米;
(3)底2.5厘米,高4厘米
3.填空:
1平方米=( )平方分米 1公顷=( )平方米
150平方厘米=( )平方分米 3.6平方米=( )平方分米
0.54平方分米=( )平方厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(1)生独立列式解答,集体订正。
(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克? ①必须知道哪两个条件? ②生独立列式,集体讲评:
先求这块地的面积:250×780÷10000=1.95公顷,
再求共收小麦多少千克:7000×1.95=13650千克
(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.练习十五第5题:
a、你能找出图中的两个平行四边形吗?
b、生计算每个平行四边形的面积。
c、他们的面积相等吗?为什么?如果学生有困难,可以引导他们观察两个平行四边形的底和高有什么特点。
d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
3.练习十五6题
让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)
4.练习十五第7题。
老师出示一个长方形木框,慢慢拉成一个平行四边形。继续拉,让平行四边形的形状发
生变化。让学生观察后说一说,什么没变?什么变了?
师概括:木框4条边的长度没变,也就是周长没变。但拉成平行四边形后,底边上的高变了,面积也就变小了。
思考:什么情况下面积最大?小组讨论后交流。
5.练习十五第3题:已知一个平行四边形的面积和底,求高。
分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习:练习十五第7题。
四、作业:练习十五第4题。
教学反思:
本课最成功之处是采用了长方形磁条教学第7题。我先将磁性长方形框架吸在黑板上,描出其形状,然后拉动框架,再描出平行四边形。通过形象图示的观察,学生很快就理解了面积发生变化的原因,看来直观感受胜于说教。
虽然本课变式练习较多,但学生掌握起来难度不大,反倒是我未曾预料到的单位换算成了作业难点,看来学生原有基础知识薄弱再次成为教学的瓶颈。因此再教时,我会在基本练习中补充单位换算(已对教案进行了修改)。如果练习效果不佳,我还将对所有面积单位进行梳理,对换算方法进行复习。梳理图如下:
1平方千米 =100 公顷 =10000 平方米 100 平方分米=10000 平方厘米
×进率
高级单位 低级单位
÷进率
同时,还可以把基本练习中的数据适当进行变化,以此来复习和巩固长度单位的换算。如可将第2小题的高改为1米3分米,将第3小题的高改为0.4分米。
第三课
三角形面积的计算
教学目标:
1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2.培养学生观察能力、动手操作能力和类推迁移的能力,进一步体会转化方法在图形中的应用。
3、通过操作、观察和比较,使学生认识转化的思想方法在研究三角形面积时的运用,发展学生的空间观念。
4.培养学生勤于思考,积极探索的学习精神.
教学重点:理解三角形面积计算公式,正确计算三角形的面积.
教学难点:理解三角形面积公式的推导过程.
人教版五年级数学上册多边形的面积电子教案篇三:人教版小学五年级数学上册第五单元多边形的面积课时教学设计
第五单元多边形的面积课时教学设计
教案年级:五年级 主备教师:
第一课 平行四边形面积的计算
教学目标 1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积. 2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力. 3.对学生进行辩诈唯物主义观点的启蒙教育. 教学重点: 理解公式并正确计算平行四边形的面积.
教学难点: 理解平行四边形面积公式的推导过程.
学具准备: 每个学生准备一个平行四边形。 教学过程: 一、什么是面积?
请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢? 二、导入新课 根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
三、讲授新课 (一)、数方格法 用展示台出示方格图 这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米) 2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米? 请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。 请同学看方格图填80页最下方的表,填完后请学生回答发现了什么? 小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。 (二)引入割补法 以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。 (三)割补法 这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形? 然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。 刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。 ③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。 请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。) ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么? ②这个长方形的长与平行四边形的底有什么样的关系? ③这个长方形的宽与平行四边形的高有什么样的关系? 教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。 5、引导学生总结平行四边形面积计算公式。 这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽) 那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
6、教学用字母表示平行四边形的面积公式。 板书:S=a×h,告知S和h的读音。 说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h,或者S=ah。(6)完成第81页中间的“填空”。 7、验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等” ,加以验证。 条件强化:求平行四边形的面积必须知道哪两个条件?(底和高) (四)应用
学生自学例1后,教师根据学生提出的问题讲解。 算出下面每个平行四边形的面积。
3、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等( )
(2)平行四边形底越长,它的面积就越大( )
4、做书上82页2题。
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业:练习十五第1题。
第二课时
教学内容:平行四边形面积计算的练习 (P82~83页练习十五第4~8题。) 教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
教学重点:运用所学知识解答有关平行四边形面积的应用题。
教学过程:
一、基本练习
1、平行四边形的面积是什么?它是怎样推导出来的?
2、.口算下面各平行四边形的面积。
(1)底12米,高7米;
(2)高13分米,第6分米;
(3)底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(1)生独立列式解答,集体订正。
(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:250×780÷10000=1.95公顷,
再求共收小麦多少千克:7000×1.95=13650千克
(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.(1)练习十五第5题:
a、你能找出图中的两个平行四边形吗?
b、他们的面积相等吗?为什么?
c、生计算每个平行四边形的面积。
d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
(2)练习十五6题
让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)
3.练习十五第3题:已知一个平行四边形的面积和底,(如图),求高。
分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
练习十五第7题。
四、作业
练习十五第4题。
课后记:
第三课时 三角形面积的计算
教学目标:
1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2.培养学生观察能力、动手操作能力和类推迁移的能力.
3.培养学生勤于思考,积极探索的学习精神.
教学重点:
理解三角形面积计算公式,正确计算三角形的面积.
教学难点:
理解三角形面积公式的推导过程.
学具准备:
每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。
教学过程
一、激发
1.出示平行四边形
1.5厘米
2厘米
提问:
(1)这是什么图形?计算平行四边形的面积。
(板书:平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
二、指导探索
(一)推导三角形面积计算公式.
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
3.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?
4.用两个完全一样的锐角三角形拼.
(1)组织学生利用手里的学具试拼.(指名演示)
人教版五年级数学上册多边形的面积电子教案篇四:2014最新人教版五年级上册数学《多边形面积》教案
2014最新人教版五年级上册数学《多边形面积》教案
第1课时 平行四边形的面积(新授课)
教学内容:教材P79页本单元教学主题图;课本P80-81页的教学内容。
教学目标:
1.情感目标:(1)渗透转化的数学思想方法;
(2)使学生在探索平行四边形面积的计算方法,获得成功的经验,
形成积极的数学学习情感。
2.知识目标:(1)使学生通过实际操作和讨论思考,探索并掌握平行四边形的面
积的计算公式,并能应用公式正确计算平行四边形的面积。
(2)能应用平行四边形的面积计算公式解决相应的实际问题。
3.能力目标:使学生经历观察、操作、测量、填表、讨论、分析、比较、归纳等
数学活动过程,体会“等积变形”的思想方法,培养空间观念,发
展初步的推理能力。
教学重点:探索并掌握平行四边形面积的计算公式。
教学难点:理解平行四边形面积计算公式的推导过程,并能正确应用平行四边形的面积
计算公式解决相应的实际问题。
学具准备:每个学生准备一个平行四边形。
教学过程:
一、复习
1、什么是面积?
2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?
二、导入新课
根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
三、讲授新课
(一)、数方格法
用展示台出示方格图
1、 这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2、 请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、 这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、 然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。) ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=a×h,告知S和h的读音。
说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h,或者S=ah。
(6)完成第81页中间的“填空”。
7、验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等” ,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
(四)应用
1、 学生自学例1后,教师根据学生提出的问题讲解。
3、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等( )
(2)平行四边形底越长,它的面积就越大( )
4、做书上82页2题。
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是
怎样推导的?
五、作业
练习十五第1题。
六、板书设计
平行四边形面积的计算
长方形的面积=长×宽 平行四边形的面积=底×高
S=a×h S=a·h或S=ah
课后反思:
第2课时 平行四边形的面积(练习课)
教学内容:教材P82-83页了练习十五中的第1-8题。
教学目标:
1.情感目标:(1)引导学生养成认真审题的良好习惯;
(2)通过解决具体的实际问题,体会数学与现实生活的密切联系。
2.知识目标:通过练习,使学生进一步掌握平面四边形的面积公式,并能应用公
式解决简单的实际问题。
3.能力目标:让学生在独立思考的基础上进行合作交流,从而巩固所学的知识,
并形成技能和技巧。
教学重点:运用所学知识解答有关平行四边形面积的应用题。
教具准备:展示台
教学过程:
一、基本练习
1、平行四边形的面积是什么?它是怎样推导出来的?
2、.口算下面各平行四边形的面积。
(1)底12米,高7米;
(2)高13分米,第6分米;
(3)底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(1)生独立列式解答,集体订正。
(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:250×780÷10000=1.95公顷,
再求共收小麦多少千克:7000×1.95=13650千克
(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.(1)练习十五第5题:
厘米
a
b、他们的面积相等吗?为什么?
c、生计算每个平行四边形的面积。
d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
(2)练习十五6题
让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)
3.练习十五第3题:已知一个平行四边形的面积和底,(如图),求高。
分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习:练习十五第7题。
四、作业:练习十五第4题。
课后反思
第3课时 三角形的面积(新授课)
教学内容:教材P84-85页的教学内容。
教学目标:
1.情感目标:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数
学的兴趣。
2.知识目标:(1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并
能应用公式解决简单的实际问题;
(2)培养学生应用已有知识解决新问题的能力。
3.能力目标:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化
方法的价值,发展学生的空间观念和初步的推理能力。
教学重点: 探索并掌握三角形的面积公式,能正确计算三角形的面积。
教学难点: 理解三角形面积公式的推导过程。
学具准备:每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。
教学过程:
一、激发:1.出示平行四边形
提问:(1)这是什么图形?怎样计算平行四边形的面积。(板书:平行四边形面积
=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
二、指导探索
(一)推导三角形面积计算公式.
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
3.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?
4.用两个完全一样的锐角三角形拼.
(1)组织学生利用手里的学具试拼.(指名演示)
(2)演示课件:拼摆图形(突出旋转、平移)
教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
5.用两个完全一样的钝角三角形来拼.
(1)由学生独立完成.
(2)演示课件:拼摆图形
6.讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
7、引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书) ③这个平行四边形的底等于三角形的底。(同时板书)
④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高÷2
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
(二)教学例1
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
1.由学生独立解答.
人教版五年级数学上册多边形的面积电子教案篇五:最新版人教五年级上册数学第六单元多边形的面积教案
第六单元:多边形的面积
教材分析
本单元学习的内容主要包括:平行四边形、三角形、梯形和组合图
形的面积四个部分。它们的面积计算是在学生掌握了这些图形的特征以
及长方形、正方形面积计算的基础上,以未知向已知转化为基本方法开
展学习的。这是进一步学习圆的面积和立体图形的表面积的基础。学习
组合图形的面积安排在平行四边形、三角形和梯形面积计算之后,也是
利用转化的数学思想,让学生把不规则的平面图形转化为规则的平面图
形来计算,降低了学生的学习难度,并巩固了学生对各种平面图形的特
征的认识及面积计算,发展了学生的空间观念。
学情分析
学生已经对空间观念和直观几何已有了较为丰富的经验。在学习本
单元之前,他们在生活中积累了有关图形认识和图形测量的经验,再加
上已经学习了长方形、正方形、三角形的特征以及长方形、正方形的面
积计算。为此,学习本单元面积公式的推导过程中,教师应引导学生紧
密联系生活实际,从已有的认知基础和生活经验出发,让学生在数、剪、
拼、摆等操作活动中,完成对新知的构建。所以引导学生利用转化的数
学思想,在操作中学习新知是本单元教学的重要环节。教师既要做好引
导,又要注意不要包办代替,一定要学生在独立思考和合作交流的基础
上进行操作,切忌由教师带着做。通过实际操作活动,发展学生的空间
观念,培养动手操作能力,为接下来学习圆的面积作好铺垫。
教学目标
知识技能:掌握平行四边形、三角形和梯形的面积计算公式,并能
正确地计算相应图形的面积;了解简单组合图形面积的计算方法。
数学思考:在推理公式的过程中,引导学生应用转化的数学思想方
法,经历计算公式的过程。
问题解决:能用有关图形的面积计算公式解决简单的实际问题。在
解决问题的过程中,感受数学和现实生活的密切联系,体会学数学、用
数学的乐趣。
情感态度:培养学生认真思考、比较、推理和概况的能力。
教学重点:掌握平行四边形、三角形和梯形的面积计算公式;会计
算平行四边形、三角形和梯形的面积。
教学难点:渗透“转化”思想,培养学生运用转化的思考方法解决
问题的能力和逻辑思维能力。
课时安排:9课时
1.平行四边形的面积………………………2课时
2.三角形的面积……………………………2课时
3.梯形的面积………………………………2课时
4.组合图形的面积…………………………2课时
5.整理和复习………………………………1课时
课 时 教 案
课 时 教 案
人教版五年级数学上册多边形的面积电子教案篇六:人教版五年级数学上册第五单元多边形面积计算的整理和复习教案
《多边形面积计算的整理和复习》的教学设计 教学内容:整理和复习(教材第96、97页,练习十九)
教学目标:1、通过复习,使学生理清各种平面图形面积计算公式之间的关系。
2、使学生能够应用面积计算公式,熟练计算平行四边形、三角形、梯形和组合图形的面积。
3、能灵活运用所学面积知识知识解决有关的实际问题。
教学重点:
理清平行四边形、三角形和梯形面积公式的推导有什么相同点,及它们之间的内在联系。 教学难点:
运用知识解决简单的实际问题。
教学准备:多媒体课件。
教学过程:
一、回顾与整理
1、回顾知识
问:我们已经学过哪些平面图形?
学生回答。(长方形、正方形、平行四边形、三角形、梯形)
问:面积分别是怎样计算的?
学生回答。
师:本学期我们主要学习了平行四边形、三角形、梯形的面积计算。今天这节课就来复习多边形的面积计算。
2、整理知识
运用流程图的形式边回顾边整理。
问:请同学们回顾平行四边形的面积公式怎样推导出来的?
三角形呢? 梯形呢?
并作简单演示
比一比:比较平行四边形、三角形、梯形它们面积公式的推导过程,有什么相同的地方? 得出: 已学过的图形 ←转 化 新的图形 ( 板书 )
师:运用这种流程图的形式把所学过的多边形面积公式进行了整理,除了这种用图示整理知识外,你觉得还可以用什么方式来进行知识整理呢?
出示表格形式的知识整理
师小结:以后每学完一单元后,都要像这样用流程图或表格的形式进行知识整理,以便于我们更好地理解和掌握知识。
3、知识回顾:
(1)计算下面图形的面积。同位互批,错误自己订正。(课件出示)
(2)下面4个图形哪些图形的面积相等? 你是怎样想的? (课件出示)
(3)在下面的点子图上分别画一个平行四边形、一个三角形和一个梯形,使它们都和图中
的长方形面积相等。想一想,小组讨论可以怎么画?(课件出示)
(4)哪些梯形与平行四边形面积相等?为什么相等?(课件出示)
(5)知识应用,铺这块草坪大约需要多少钱?让学生学数学用数学,体会学习数学好处。
二、比一比我最棒:
师:刚才我们进行了多边形面积公式的回顾与整理,下面我们要进入本节课的第二部分 —比一比我最棒:
首先进入第一模块 —— 比一比我最棒:
1、下面4个图形的面积有什么关系?你是怎样想的?
2、学生独立计算梯形的面积提问你怎样想的?
问:在解题时,你有什么要提醒大家注意的?
3、三角形面积计算练习
4、等腰梯形面积的应用
5、求花坛的面积。
第二模块 —— 巩固练习:
师:在生活中,我们经常会碰到有关图形面积的问题,看,这五题你能帮忙解决吗? 出示五道应用题
学生独立完成,交流校对。
比一比:比较这三题在解题方法上有什么相同点?不同点呢?
在解决这类问题时,你有什么要提醒大家注意的吗?
第三模块 —— 比一比考考你:。
1、下面4个图形的面积有什么关系?你是怎样想的?
2、在下面的点子图上分别画一个平行四边形、一个三角形和一个梯形,使它们都和图中的长方形面积相等。
学生画后进行交流。
三、全课小结
今天这节课我们主要进行了多边形面积计算的整理与复习。
通过这节课你有什么收获?
人教版五年级数学上册多边形的面积电子教案篇七:2015年新人教版五年级上册数学第六单元《多边形的面积》经典教案
阳光小学 数学 科教案
五 年级 课题 平行四边形的面积 总课时 11 课时 第 1 课时 主备教师 累计课时
阳光小学 数学 科教案
五 年级 课题 平行四边形面积的计算 总课时 11 课时 第 2 课时 主备教师 累计课时
阳光小学 数学 科教案
五 年级 课题 三角形的面积 总课时 11 课时 第 3 课时 主备教师 累计课时
人教版五年级数学上册多边形的面积电子教案篇八:五年级数学上册多边形面积复习课复习教案
多边形的面积复习课教案
2、师:平行四边形、三角形和梯形的面积公式是怎样推导出来的?(小组进行讨论)
(学生汇报:画出平行四边形的高,沿高剪下一个三角形,把三角形移到平行四边形的另一边,就得到一个长方形,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。两个完全一样的三角形可以拼成一个平行四边形,其中一个三角形的面积是平行四边形面积的一半,因为平行四边形的面积等于底乘高,所以三角形的面积等于底乘高除以2;两个完全一样的梯形可以拼成一个平行四边形,平行四边形的底等于梯形上底与下底的和,平行四边形的高等于梯形的高,其中一个梯形的面积等于平行四边形面积的一半。所以梯形的面积等于…….; 沿梯形上底与一个腰的交点向对腰中点画一条线,剪下一个三角形,在拼成一个大三角形。)
3、请大家想一想,你们在利用公式解决实际问题时有什么容易出错的地方或是需要大家注意的地方? 学生回报:
1. 弄清图形,选择公式。 2. 找对应的底和高。
3. 注意单位换算。
4. 三角形和梯形的面积别忘了除以2。
5. 解决问题时,弄清面积与其他数量的关系。
6. 看青组合图形是由哪几个简单图形组成的,找简单的解决方法。 7. 已知面积,求底或高可以用方程解。 二、练习
2、
8cm
13cm
15m
8cm
12cm
13cm
17cm
5cm
、
4、有一块平行四边形的菜地,底是27.6米,高是15米。每平方米收青菜6千克。这块地收多少千克青菜?
5、一块三角形的玻璃,量得它的底是12.5分米,高是7.5分米。如果每平方分米玻璃的价钱是0.28元,买这块玻璃要用多少钱?
人教版五年级数学上册多边形的面积电子教案篇九:人教版五年级数学上册多边形的面积单元备课
第五单元 多边形的面积
教材简析:本单元教材包括四部分内容:平行四边形的面积、三角形的面积、梯形的面积和组合图形的面积。本单元教材突出以下特点:加强知识之间的联系,以图形内在联系为线索,以未知向以知转化为基本方法开展学习。体现动手操作、合作学习的学习方式,让学生经历自主探索的过程,注意练习的探索性,形式多样化,以促进学生对计算公式的理解和灵活运用。
教学目标:
知识与技能:1、理解并掌握各种图形的年级计算公式。
2、引导学生运用转化的方式来探索规律,认识新旧知识的联系。
3、会拼、摆、拆分各种组合图形,并正确计算组合图形的面积
过程与方法:1、通过实验、操作、拼摆、割补等方法,使学生经历计算公式的推导过程,进一步发展学生的思维。
2、应用面积的计算公式,使学生运用转化的方法解决实际问题,发展学生的空间观念。
情感、态度与价值观:沟通知识与生活的联系,激发学生的学习兴趣,培养学生探究意识和创新能力,发展学生的空间观念。
教学措施
平行四边形的面积是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形、梯形面积、圆的面积和立体图形表面积计算的基础。三角形面积的知识基础是:三角形底和高的认识以及长方形、正方形和平行四边形面积计算公式。知识的增长点是三角形面积公式。其探究的过程与方法的基础是割补法、增补法,以及平行四边行面积推导过程中蕴含的“根据一定的条件和方法将未知转化为已知”的数学思想和方法。 重点:
1、推导平行四边形的面积计算公式。
2、三角形面积公式的推倒过程。
3、理解并掌握梯形面积公式的推导过程。
4、能正确的把组合图形分解成几个已学过的图形。
难点:
1、推导平行四边形的面积计算公式。
2、三角形面积公式的推倒过程。
3、理解并掌握梯形面积公式的推导过程。
4、能正确的把组合图形分解成几个已学过的图形。
课时划分
1、平行四边形的面积 „„„„„„„„„„„„„„„„„„„„„ 2课时
2、三角形的面积„„„„„„„„„„„„„„„„„„„„„„„„ 2课时
3、梯形的面积„„„„„„„„„„„„„„„„„„„„„„„„„ 2课时
4、组合图形的面积„„„„„„„„„„„„„„„„„„„„„„„ 2课时 整理和复习„„„„„„„„„„„„„„„„„„„„„„„„„„ 1课时
人教版五年级数学上册多边形的面积电子教案篇十:小学五年级数学多边形的面积教案
5 多边形的面积
第一课 平行四边形面积的计算
教学目标
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:
理解公式并正确计算平行四边形的面积.
教学难点:
理解平行四边形面积公式的推导过程.
学具准备:
每个学生准备一个平行四边形。
教学过程:
1、什么是面积?
2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛
的长是3米,宽是2米,怎样计算它的面积呢?
二、导入新课
根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
三、讲授新课
(一)、数方格法
用展示台出示方格图
1、 这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方
形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2、 请同学看方格图填80页最下方的表,填完后请学生回答发现了什么? 小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、 这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高
剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、 然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。) ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=a×h,告知S和h的读音。
说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h,或者S=ah。
(6)完成第81页中间的“填空”。
7、验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等” ,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
(四)应用
1、
2、 学生自学例1后,教师根据学生提出的问题讲解。 算出下面每个平行四边形的面积。
3、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等( )
(2)平行四边形底越长,它的面积就越大( )
4、做书上82页2题。
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业
练习十五第1题。
六、板书设计
平行四边形面积的计算
平行四边形的面积=底×高
S=a×h
S=a·h或S=ah
课后记:
第二课时
教学内容:平行四边形面积计算的练习 (P82~83页练习十五第4~8题。) 教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。