五年级上册数学期末整理与复习

| 五年级 |

【www.guakaob.com--五年级】

五年级上册数学期末整理与复习篇一:五年级上册数学期末总复习资料 整理

五年级数学上册期末总复习

1、各种单位之间的进率:(大单位化成小单位乘以它们之间的进率、小单位化成大单

位除以它们之间的进率。简称大化小乘、小化大除)

(1)、长度单位:千米(km)﹥米(m)﹥分米(dm)﹥厘米(cm)﹥毫米(mm)

1千米=1000米 1米=10分米 1米=100厘米 1分米=10厘米 1厘米=10毫米

(2)面积单位:平方千米(km)2 ﹥公顷 ﹥平方米(m)2﹥平方分米(dm)2﹥

平方厘米(cm)2﹥平方毫米(mm)2

1平方千米=100公顷 1公顷=10000平方米 1平方千米=1000000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

(3)、重量单位:吨(t)﹥千克(kg)﹥克(g)

1吨=1000千克 1千克=1000克

(4)、时间单位:世纪﹥年﹥月﹥日﹥时﹥分﹥秒

1世纪=100年 1年平年365天 1年闰年366天 1年12个月

1月 、3月、5月、7月、8月、10月、12月每月31天。

4月、6月、9月、11月每月30天 平年2月28天 闰年2月29天

1年分4季 每月分为上、中、下上旬

1天24小时 1小时60分钟 1分钟60秒

2、各种图形面积的计算

正方形:四条边相等。 周长=边长×4 字母公式C正=4a

2 面积=边长×边长a 长方形:对边相等。 字母公式S正=a

长方形的对边相等

周长=(长+宽)×2 字母公式C长=2(a+b)

平行四边形:对边平行 对边相等。

面积

=底×高 字母公式S平=ah a=S÷h h=S÷a

a

三角形的面积=底×高÷2

字母公式÷2 a=2S÷h h=2S÷a

梯形:只有一组对边平行,平行的两条边就是底

一般情况短边叫上底、长边叫下底)

梯形的面积=(上底+下底)×高÷2

字母公式S梯=(a+b)h÷2 a=2S÷h-b b=2S÷h-a

h=2S÷(a+b)

3、小数乘法的计算方法:先按整数乘法算出积、在数出因数中一共有几位小数,点上小数点,位数不够添上0。小数末尾的0要去掉。例如: 4.25×0.108=

(1)、一个数(0除外)乘以小于1的数,积比这个数小。

如:3.2×0.88﹤3.2 0.13×4.76﹤4.76

(2)一个数(0除外)乘以大于1的数,积比这个数大。

如:0.23×1.04﹥0.23 3.5×7.3﹥7.3

4、小数除法的计算方法:先把除数扩大成整数。除数扩大多少倍,被除数也只能扩大多少倍,商的小数点和被除数的小数点对齐。不够除时商0。除到最后仍然有余数要添0往下出。 例如: 50.4÷0.28=

(1)、一个数(0除外)除以大于0的数,商比原来的数小。

(2)、一个数(0除外)除以大于0且小于1的数,商比原来的数大。

例如:0.99÷0.99﹥0.99

5、各种运算定律在小数计算中的应用:

(1) 加法: 交换律:交换两个加数的位置和不变。a +b=b+a

结合律:三个或三个以上的数连续相加,可以先把前先把前两个数相加在和后一个数相加,也可以先把后两个数相加在和第一个数相加。

a +b+c=(a+b)+c a+b+c=a+(b+c)

(2) 加法:一个数连续的减去几个数,可以把后面的所有减数相加,再和倍减数相减。 a –b-c=a-(b+c)

(3) 乘法:交换律:交换两个因数的位置积不变。ab =ba

结合律:三个或三个以上的数连续相乘,可以先把前先把前两个数相乘在和后一个数相乘,也可以先把后两个数相乘在和第一个数相乘。

abc =(ab)c abc=a(bc) abc=(ac)b

分配律:两个数的和或差与一个数相乘,可以用这个数与括号内的数分别相乘。再相加或相减。 (a +b)c=ac+bc (a-b)c=ac-bc

(4)、除法的性质:一个数连续的除以几个数,可以把后面的所有除数相乘,再和被除数相出。a ÷b÷c=a÷(bc)。

(5)、简便计算练习:

0.78×101 6.4×2.8+2.8×3.6 0.25×1.25×4×8

0.125×3.2×2.5 1.27×101-1.27 9.6÷0.24÷4

0.8×2.6×125 96.5÷5÷0.2 32×0.25

(0.25+2.5)×40 8.8×0.125 86.7-13.6-26.4

4.4×25 17.17-6.8-3.2-6.17 17.45-(3.2+12.45)

3、解方程必需掌握的六个公式:

加法:一个加数=和-另一个加数 如: 被减数=差+减数 如:

减数=被减数-差 如:

乘法:一个因数=积÷另一个因数 如: 被除数=商×除数 如:

除数=被除数÷商 如:

解方程的一般步骤:先判断是什么法 再看未知数在哪个位置上 说出相应的公式。

应用练习:

(1)、行程问题: 路程=速度×时间 速度=路程÷时间 时间=路程÷速度 例如:两辆汽车同时相背而行,4.5小时后两车相距54.千米,甲车每小时行52千米,乙车每小时行都少千米?

(2)、甲、乙两辆车同时从学校开往家里,甲车每小时行驶50千米,乙车每小时行驶56千米,4小时后两车相距多少?

2、价格问题:总价=单价×数量 单价=总价÷数量 数量=总价÷单价

例如:小敏买了两套丛书,两套丛书的本数相同。科学丛书每本2.5元,发明家丛书每本3元,共花了22元。每套丛书有多少本?

3、工程问题:工作总量=工作效率×工作时间 工作效率=工作总量÷工作时间 工作时间=工作总量÷工作效率

(1)、农田里二台播种机6小时可以播种2.4公顷,照这样计算3.56小时3台播种机可以播种多少公顷?

五年级上册数学期末整理与复习篇二:小学五年级数学上册期末复习知识点归纳

小学五年级数学上册期末复习知识点归纳

第一单元小数乘法

1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有

几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少。

1.5×1.8就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有

几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够

时,要用0占位。

3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(P10)

⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、(P11)小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c

乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:

(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】

除法:除法性质:a÷b÷c=a÷(b×c)

第二单元小数除法

8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运

算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数

的运算。

9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。,

商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如

果有余数,要添0再除。

10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,

使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保

留一定的小数位数,求出商的近似数。

12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩

小相同的倍数(0除外),商不变。

②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。

13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字

依次不断重复出现,这样的小数叫做循环小数。 循环节:一个

循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.

14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的

小数,叫做无限小数。

第三单元观察物体

15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体

时,从固定位置最多能看到三个面。

第四单元简易方程

16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不

写。

加号、减号除号以及数与数之间的乘号不能省略。

17、a×a可以写作a•a或a ,a 读作a的平方。 2a表示a+a

18、方程:含有未知数的等式称为方程。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

19、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

20、10个数量关系式:

加法:和=加数+加数 一个加数=和-两一个加数

减法:差=被减数-减数 被减数=差+减数 减数=被减数-差

乘法:积=因数×因数 一个因数=积÷另一个因数

除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商

21、所有的方程都是等式,但等式不一定都是方程。

22、方程的检验过程:方程左边=…… 方程右边=…… 所以,X=…是方程的解。

23、方程的解是一个数;

解方程是一个计算过程。

第五单元多边形的面积

23、公式:长方形:

周长=(长+宽)×2—【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab

正方形:周长=边长×4 字母公式:C=4a

面积=边长×边长 字母公式:S=a

平行四边形的面积=底×高 字母公式: S=ah

三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】

字母公式: S=ah÷2

梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2

——【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下

底)】

24、平行四边形面积公式推导:剪拼、平移 25、三角形面积公式

推导:旋转

平行四边形可以转化成一个长方形; 两个完全一样的

三角形可以拼成一个平行四边形,

长方形的长相当于平行四边形的底; 平行四边形的底

相当于三角形的底;

长方形的宽相当于平行四边形的高; 平行四边形的高

相当于三角形的高;

长方形的面积等于平行四边形的面积, 平行四边形的面

积等于三角形面积的2倍,

因为长方形面积=长×宽,所以平行四边形面积=底×高。 因为平行四边形面

积=底×高,所以三角形面积=底×高÷2

26、梯形面积公式推导:旋转 27、三角形、梯

形的第二种推导方法老师已讲,自己看书

两个完全一样的梯形可以拼成一个平行四边形, 知道就行。

平行四边形的底相当于梯形的上下底之和;

平行四边形的高相当于梯形的高;

平行四边形面积等于梯形面积的2倍,

因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;

等底等高的平行四边形面积是三角形面积的2倍。

29、长方形框架拉成平行四边形,周长不变,面积变小。

30、组合图形:转化成已学的简单图形,通过加、减进行计算。

第六单元统计与可能性

31、平均数=总数量÷总份数

32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水

平更合适。

第七单元数学广角

33、数不仅可以用来表示数量和顺序,还可以用来编码。

34、邮政编码:由6位组成,前2位表示省(直辖市、自治区) 0 5

4 0 0 1

前3位表示邮区

前4位表示县(市)

最后2位表示投递局

35、身份证号码:18位

1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

河北省 邢台市 邢台县 出生日期 顺序码 校验码

倒数第二位的数字用来表示性别,单数表示男,双数表示女。

第一单元 倍数与因数(我们只在自然数(0除外)范围内研究倍数和因数。)

1、像0、1、2、3、4、5、6……这样的数是自然数。

2、像-3、-2、-1、0、1、2、3……这样的数是整数。3、整数与自然数的关系:整数包括自然数。

4、倍数和因数: 举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的。

5、找倍数:从1倍开始有序的找。

6、一个数倍数的特点: ①一个数的倍数的个数是无限的;

②最小的倍数是它本身;

③没有最大的倍数。

7、找因数:找一个数的因数,一对一对有序的找较好。

8、一个数因数的特点: ①一个数的因数的个数是有限的;

②最小的因数是1;

③最大的因数是它本身。

9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数。

10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。 按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数

11、5的倍数的特征:个位是0或5的数是5的倍数。

12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数。

13、既是2的倍数又是5的倍数的特征:个位是0的数。

既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数; ②各个数位上的数字的和是3的倍数

既是3的倍数又是5的倍数的特征:①个位是0或5的数;

②各个数位上的数字的和是3的倍数 既是2的倍数又是3的倍数还是5的倍数的特征: ①个位是0的数; ②各个数位上的数字的和是3的倍数

9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数

14、质数:一个数只有1和它本身两个因数,这个数叫质数。最小的质数是2,是唯一的质数中的偶数。

100以内的质数:

15、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。 1既不是质数也不是合数,最小的合数是4.

16、按一个数的因数个数分,自然数可以分为三类。

第二单元 图形的面积(一)

1、 长方形周长=(长+宽)×2 C = 2 ( a + b )

2、 长方形面积=长×宽 S = a b

3、 正方形周长=边长×4 C = 4 a

4、 正方形面积=边长×边长 S = a 2

5、 平行四边形面积=底×高 S = a h

6、 平行四边形底=面积÷高 a = S ÷ h

7、 平行四边形高=面积÷底 h = S ÷ a

8、 三角形面积=底×高÷2 S = a h ÷ 2

9、 三角形底=面积×2÷高 a = 2 S ÷ h

10、 三角形高=面积×2÷底 h = 2 S ÷ a

11、 梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2

12、 梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )

13、 梯形上底=梯形面积×2÷高-下底 a = 2 S ÷ h - b

14、 梯形下底=梯形面积×2÷高-上底 b = 2 S ÷ h - a

15、 1平方千米=100公顷=1000000平方米

16、 1公顷=10000平方米

17、 1平方米=100平方分米=10000平方厘米

第三单元 分数

1、 分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、 分母:表示平均分的份数。分子:表示取出的份数。

3、 分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做 分数。表示其中的一份的数,叫做这个分数的分数单位。

4、 真分数:分子小于分母的分数叫做真分数。真分数小于1。

5、 假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。

6、 带分数:由整数和真分数组成的分数叫做带分数。

7、 假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。

8、 整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。

9、 带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。

10、 质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

11 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=2×2×3

12、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。

13 互质:两个数的公因数只有1,这两个数叫做互质。

互质的规律:

(1) 相邻的自然数互质;

(2) 相邻的奇数都是互质数;

(3) 1和任何数互质;

(4) 两个不同的质数互质

(5) 2和任何奇数互质。

质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.

五年级上册数学期末整理与复习篇三:人教版五年级上册数学期末复习作业(整理)

五年级上册数学期末整理与复习篇四:小学数学 五年级上册期末复习知识点归纳

小学数学 五年级上册期末复习知识点归纳 第一单元 小数乘法

1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:

⑴四舍五入法;

⑵进一法;

⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8

乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b) 变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c

减法:减法性质:a-b-c=a-(b+c)

除法:除法性质:a÷b÷c=a÷(b×c)

第二单元 位置

8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。二是给出坐标中的一个点,要能用数对表示。

第三单元 小数除法

9、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3,求另一个因数是多少。

10、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

11、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

12、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

13、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大(缩小),商随着扩大(缩小)。③被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。

14、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.简写作6.32

15、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。小数分为有限小数和无限小数。

第四单元 可能性

16、事件发生有三种情况:可能发生、不可能发生、一定发生。

17、可能发生的事件,可能性大小。把几种可能的情况的份数相加做分母,单一的这种可能性做分子,就可求出相应事件发生可能性大小。

第五单元 简易方程

18、(P45)在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。

19、a×a可以写作a·a或a ,a 读作a的平方 2a表示a+a

特别地1a=a这里的:“1“我们不写

20、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式 必须有未知数两者缺一不可)。使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。

21、解方程原理:天平平衡。 等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

22、10个数量关系式:

加法:和=加数+加数 一个加数=和-另一个加数

减法:差=被减数-减数 被减数=差+减数 减数=被减数-差

乘法:积=因数×因数 一个因数=积÷另一个因数

除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商

23、所有的方程都是等式,但等式不一定都是等式。

24、方程的检验过程:方程左边=……

25、方程的解是一个数; 解方程式一个计算过程。=方程右边 所以,X=…是方程的解。

平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷2

29、梯形面积公式推导:旋转

30、两个完全一样的梯形可以拼成一个平行四边形。平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

31、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。

32、长方形框架拉成平行四边形,周长不变,面积变小。

33、组合图形面积计算:必须转化成已学的简单图形。

当组合图形是凸出的,用虚线分割成几种简单图形,把简单图形面积相加计算。 当组合图形是凹陷的,用虚线补齐成一种最大的简单图形,用最大简单图形面积减几个较小的简单图形面积进行计算。

第七单元数学广角-植树问题、鸡兔同笼问题

34、不封闭栽树问题:

(1)一条路的一边两端都栽树=路长÷间隔+1;

已知间隔数,树的棵树,求路长。路长=间隔数×(树的棵树-1)

(2)一条路的两边两端都栽树=(路长÷间隔+1)×2

(3)一条路的一边两端不栽树=路长÷间隔-1

(4)一条路的两边两端不栽树=(路长÷间隔-1)×2

(5)锯木头时间问题:锯一段木头时间=总时间÷(段数-1)

35、封闭图形四周栽树问题:栽树棵树=周长÷间隔

36、鸡兔同笼问题:(龟鹤问题、大船小船问题)

(1)算术假设法1:假设几只都是兔子,(都是脚多的兔子),先求鸡的只数 鸡的只数:(总头数×4-总脚数)÷(4-2即一只兔的脚数减去一只鸡的脚数) 兔的只数:总头数-鸡的只数

五年级上册数学期末整理与复习篇五:小学五年级数学上册复习教学知识点归纳总结,期末测试试题习题大全

第一单元小数乘法

1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少。

1.5×1.8就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(P10)

⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、(P11)小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c

乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】

除法:除法性质:a÷b÷c=a÷(b×c)

第二单元小数除法

8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。

13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.

14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

第三单元观察物体

15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

第四单元简易方程

16、(P45)在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。

加号、减号除号以及数与数之间的乘号不能省略。

17、a×a可以写作a·a或a ,a 读作a的平方。 2a表示a+a

18、方程:含有未知数的等式称为方程。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

19、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数

减法:差=被减数-减数 被减数=差+减数 减数=被减数-差

乘法:积=因数×因数 一个因数=积÷另一个因数

除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商

21、所有的方程都是等式,但等式不一定都是等式。

22、方程的检验过程:方程左边=…… 23、方程的解是一个数;

=…… 解方程式一个计算过程。

=方程右边

所以,X=…是方程的解。

第五单元多边形的面积

23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)×2

面积=长×宽 字母公式:S=ab

正方形:周长=边长×4 字母公式:C=4a

面积=边长×边长 字母公式:S=a

平行四边形的面积=底×高 字母公式: S=ah

三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】 字母公式: S=ah÷2

梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2

——【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】

24、平行四边形面积公式推导:剪拼、平移 25、三角形面积公式推导:旋转

平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,

长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底;

长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高;

长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍,

因为长方形面积=长×宽,所以平行四边形面积=底×高。 因为平行四边形面积=底×高,所以三角形面积=底×高÷2

26、梯形面积公式推导:旋转 27、三角形、梯形的第二种推导方法老师已讲,自己看书

两个完全一样的梯形可以拼成一个平行四边形, 知道就行。

平行四边形的底相当于梯形的上下底之和;

平行四边形的高相当于梯形的高;

平行四边形面积等于梯形面积的2倍,

因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;

等底等高的平行四边形面积是三角形面积的2倍。

29、长方形框架拉成平行四边形,周长不变,面积变小。

30、组合图形:转化成已学的简单图形,通过加、减进行计算。

第六单元统计与可能性

31、平均数=总数量÷总份数

32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。

第七单元数学广角

33、数不仅可以用来表示数量和顺序,还可以用来编码。

34、邮政编码:由6位组成,前2位表示省(直辖市、自治区) 0 5 4 0 0 1

前3位表示邮区

前4位表示县(市)

最后2位表示投递局

35、身份证号码:18位

1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

河北省 邢台市 邢台县 出生日期 顺序码 校验码

倒数第二位的数字用来表示性别,单数表示男,双数表示女。

五年级数学知识点测试题

班级:_________ 姓名:___________

一、填空。(50分)

1.在0,0.31, ,3,4,17,30中,质数有( ),合数有( ),( )是( )的因数,同时是2、3、5的倍数的数是( )。

2. 一个梯形的上底扩大2倍,下底也扩大2倍,高不变,那么它的面积扩大( )倍。

3.一个三角形比与它等底等高的平行四边形的面积少了30平方厘米,这个三角形的面积是( )平方厘米。

4. 里有( )个 ,再添上( )个 就是最小质数。

5. 2.5= =50÷( )=( )÷50

6. 比较大小。

1○ 2.5○ ○ 0.87○ ○

7. 分数单位是 的最小假分数是( ),最大真分数是( )。

8. 五年级一班学生不到50人,进行队列表演,如果每行12人或16人都正好排成整行,这个班的学生共有( )人。

9.晚上,小明正开着灯在吃晚饭,顽皮的弟弟按了15下开关,这时灯是( )着的,如果再按50下,这时灯是( )着的。(填“开”或“关”)

10. a与b都是互质数,a和b的最大公约数是( ),最小公倍数是( )。

11.两个质数的和是19,这两个质数的积是( )。

二、判断。(10分)

1. 一个数的倍数一定比原数大。······························( )

2. 除了2以外,所有的质数都是奇数。························( )

3. 三角形的面积是平行四边形面积的一半。····················( )

4. 通分后,分数的大小不变,分数单位却变大了。················( )

5. 直角三角形的面积等于两条直角边的长度乘积除以2。···( )

三、选择。(10分)

1. 下列四个算式中,和是奇数的有( )。

11112+11302 10256+12322 33322+22145 22011+32213

A 1个 B 2个 C 3个 D 4个

2. 把7米长的绳子平均剪成8段,每段占全长的( )。

A 米 B 米 C D

3. 分母是12的最简真分数有( )个。

A 3 B 4 C 6 D 10

4. 学校教学楼有四层。小青第一节课到四楼上数学课,第二节到二楼上艺术课,第三节到三楼上科学课,中午到一楼食堂吃饭。下面比较准确地描述这件事是( )图。

5.大于 ,小于 的分数有( )个。

A 1 B 2 C 3 D 无数

四、解答问题。(30分)

1.小明和小鹏比赛写大字,小明3分钟写了10个,小鹏4分钟写了13个,他们两个谁写得快?

2.六年级共有男生200人,女生150人,

(1)男生人数占全年级的几分之几?

(2)男生比女生多了多少人?

3. 甲乙两个工程队修一条长1400米的公路,他们从两端同时开工,甲队每天修80米,乙队每天修60米,多少天后能够修完这条公路?

8米

4. 王大爷在自家墙外围成一个养鸡场(如右图),围鸡场的篱笆的总长是22m,其中一条边是8m,求养鸡场的面积。

5.一个三角形的底长3m,如果底延长1m,那么三角形的面积就增加1.2 m2。原来三角形的面积是多少m2?

6.旅行社推出AB两种优惠方案,有10位家长带5名孩子,哪种方案买票省钱?A团体5人以上(含5人)每位300元 B成人每位400元,小孩每位200元。

第一单元 倍数与因数(我们只在自然数(0除外)范围内研究倍数和因数。)

1、像0、1、2、3、4、5、6……这样的数是自然数。

2、像-3、-2、-1、0、1、2、3……这样的数是整数。3、整数与自然数的关系:整数包括自然数。

4、倍数和因数: 举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的。

5、找倍数:从1倍开始有序的找。

6、一个数倍数的特点: ①一个数的倍数的个数是无限的;

②最小的倍数是它本身;

③没有最大的倍数。

7、找因数:找一个数的因数,一对一对有序的找较好。

8、一个数因数的特点: ①一个数的因数的个数是有限的;

②最小的因数是1;

③最大的因数是它本身。

9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数。

10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。

按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数

11、5的倍数的特征:个位是0或5的数是5的倍数。

12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数。

13、既是2的倍数又是5的倍数的特征:个位是0的数。

既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数;

②各个数位上的数字的和是3的倍数

既是3的倍数又是5的倍数的特征:①个位是0或5的数;

②各个数位上的数字的和是3的倍数

既是2的倍数又是3的倍数还是5的倍数的特征: ①个位是0的数;

②各个数位上的数字的和是3的倍数

9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数

14、质数:一个数只有1和它本身两个因数,这个数叫质数。最小的质数是2,是唯一的质数中的偶数。 100以内的质数:

15、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。

1既不是质数也不是合数,最小的合数是4.

16、按一个数的因数个数分,自然数可以分为三类。

五年级上册数学期末整理与复习篇六:五年级数学上册第五单元期末整理和复习

五年级数学上册第五单元期末整理和复习 复习内容:

1.小数乘、除法的意义

2.运算定律、混合运算

3.多边形的面积

4.简易方程

5.应用题

复习要求:

通过总复习,把本学期所学的知识进一步系统化,使学生对所学的概念、计算法则、规律性的知识得到进一步提高,全面达到本学期的教学目的。

复习重点:

1.小数乘、除法的计算法则。

2.多边形面积的计算公式。

3.解简易方程。

4.分析应用题中的数量关系。

复习安排:六课时

第一课时

复习内容:小数乘、除法的意义、计算方法和运算定律,四则混合运算。(总复习第l~4题,练习三十二第1~4题。)

复习要求:

1.使学生进一步理解小数乘、除法运算的意义,掌握小数乘、除法的计算法则以及乘法和除法之间的关系,能够比较熟练地进行小数乘、除法计算,

2.使学生掌握乘法的运算定律,会应用这些定律进行简便运算。

3.使学生进一步提高整、小数混合运算的熟练程度。

复习重点:小数乘、除法的计算法则。

复习过程:

一、基本练习

教师用小黑板或投影片出示复习题。

1.直接写出得数。

0.1÷0.50.1×0×13.53÷8

40÷502.8×32.5×4

0.2×4007.6÷197÷35

2.填空。

(1)56个十分之一加4个十分之一,一共是()个十分之一。

(2)5.6×0.4就是求5.6的()分之()。

(3)2.094去掉小数点后是原数的()倍。

(4)0.24×3表示(),还表示();

2.7+2.7+2.7+2.7改写成乘法算式是()。

(5)2.9×0.25的积有()位小数;9.12÷0.24的商的最高位在()位上。

二、复习指导

1.小数乘、除法的意义。

(1)整、小数乘法的意义

教师指名让学生说一说整数乘法的意义及乘法各部分的名称,然后启发学生思考并回答:小数乘法与整数乘法的意义都相同吗?有没有不同的地方?引导学生说出小数乘法有两种情况:一种是小数乘以整数,它的意义与整数乘法的意义相同;另一种是一个数乘以小数,它的意义是求这个数的十分之几、百分之几、千分之几„„

(2)整、小数除法的意义。

教师指名让学生说一说:整数除法的意义是什么?除法各部分的名称是什么?然后再让学生回答:小数除法与整数除法的意义相同吗?让学生明确:小数除法与整数除法的意义是相同的,都是已知两个因数的积与其中的一个因数,求另一个因数的运算。

(3)乘、除法各部分间的关系。

指名让学生说一说乘法各部分间的关系是什么?除法各部分间的关系是什么?除法和乘法之间有什么关系?利用这些关系,怎样验算乘法和除法?加深学生对乘、除法各部分间关系的认识。

2.复习小数乘、除法的计算方法。

(1)小数乘法的计算方法。

①指名学生说一说整数乘法的计算法则。

②启发学生思考并回答:小数乘法的计算法则与整数的有什么相同和不同的地方? 让学生明确:小数乘法的计算法则与整数的相同,不同的地方是:小数乘法算出的积要点小数点。

(2)小数除法的计算方法。

指名让学生说一说小数除法有哪两种情况,各怎样计算?

引导学生说出:一种是除数是整数的小数除法,计算时按照整数除法法则去除,要注意商的小数点和被除数的小数点对齐;另一种情况是除数是小数的除法,把除数和被除数的小数点同时向右移动,使除数变成整数,再按照前一种情况进行计算。

(3)复习乘法运算定律。

①指名学生回答:在学习乘法运算时,学习过哪些运算定律?(交换律、结合律、分配律。)

②请学生举例说明整数的乘法运算定律是否可以推到小数乘法?

(4)复习整、小数四则混合运算。

①四则混合运算的顺序。

指名让学生说一说什么叫第一级运算?什么叫第二级运算?

然后让学生说一说四则混合运算的顺序。使学生进一步掌握:在计算时首先要看题里有没有括号,如果有括号,要先算小括号里面的,再算中括号里面的;如果有两级运算,要先做第二级运算,再做第一级运算;如果只有同一级运算,要从左往右算。

②四则混合运算的一些简便算法。

出示:4.5×1.02。指名学生板演,其他同学在练习本上做。

然后让学生说一说计算过程和方法,教师对运用了简便计算方法的同学给予表扬。并告诉学生:简便算法是在前面学习整数四则运算时应用的,现在学习整、小数四则混合运算也可以应用运算定律使一些计算简便。做题时要善于观察,能运用简便方法计算的,都要用简便方法进行计算。

③列综合算式解答文字题。

师出示:6.5加上3.3,所得的和乘以2.5,再去除73.5,商是多少?生列式计算,师巡视。

学生做完后,教师出示一道学生错列的算式:73.5÷(6.5+3.3)×2.5,让学生分析错在哪里。提醒学生注意:在列式时要仔细审题,正确使用小括号和中括号。根据题意,73.5是被除数,而除数是(6.5+3.3)×2.5的得数,要把它作为除数,就要用中括号括起来,否则列出的算式不符合题意。

三、课堂练习

练习三十二第1~4题。

第二课时

复习内容:多边形面积的计算(总复习第5题,练习三十二第5~8题。)

复习要求:使学生进一步理解多边形面积之间的内在联系,掌握多边形面积的计算公式,能够比较熟练地计算多边形的面积。

复习重点:多边形面积的计算公式。

复习过程:

一、基本练习

1.填空。

(1)等腰直角三角形的底边长12厘米,这条底边上的高是()厘米,面积是()平方厘米。

(2)两个完全相同的梯形可以拼成一个(),一个梯形的面积是()面积的()。

(3)梯形的面积=上底+下底)X高÷2,当上底等于零时,梯形变成(),这时面积=( );当上底与下底相等时,梯形变成()形,这时面积=()。

2.判断。(对的打“√”,错的打“X”。)、

(1)平行四边形的面积等于三角形面积的2倍。()

(2)一个平行四边形的面积是82平方厘米,与它等底等高酌

三角形的面积是41平方厘米。()

(3)等腰直角三角形的一条直角边是7厘米,这个三角形的

面积是49平方厘米。()

(4)一个三角形底长3分米,高2分米。将这样的两个三角

形拼成一个平行四边形,这个平行四边形的面积是3平方分米。

()

(5)一个三角形和一个平行四边形面积相等,底也相等,则三

角形的高是平行四边形的高的2倍。()

(6)梯形的上底要比下底短。()

二、复习指导

1.多边形面积的计算公式及推导。

(1)平行四边形的面积计算公式是怎样的?它是怎样推导出来的?(把一个平行四边形割补成一个长、宽分别与这个平行四边形的底、高相等的长方形,再根据长方形的面积计算公式推导出平行四边形的面积计算公式。)

板书:平行四边形的面积=底×高

五年级上册数学期末整理与复习篇七:五年级数学上册期中考试整理复习

小巨人学科教师辅导讲义

五年级上册数学期末整理与复习篇八:小学五年级数学上册复习知识点归纳总结及配套期末模拟试卷

小学五年级数学上册复习知识点归纳总结及配套期末模拟试卷 第一单元小数乘法

1、 小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少。

1.5×1.8就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(P10)

⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角

6、(P11)小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c

乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】

除法:除法性质:a÷b÷c=a÷(b×c)

第二单元小数除法

8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。

13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232„„的循环节是32.

14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

第三单元观察物体

15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

第四单元简易方程

16、(P45)在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。

加号、减号除号以及数与数之间的乘号不能省略。

17、a×a可以写作a·a或a2 ,a2 读作a的平方。 2a表示a+a

18、方程:含有未知数的等式称为方程。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

19、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数

减法:差=被减数-减数 被减数=差+减数 减数=被减数-差

乘法:积=因数×因数 一个因数=积÷另一个因数

除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商

21、所有的方程都是等式,但等式不一定都是等式。

22、方程的检验过程:方程左边=右边

23、方程的解是一个数;

第五单元多边形的面积

23、公式:长方形:周长=(长+宽)×2 面积=长×宽

字母公式:C=(a+b)×2 S=ab a=S÷b

正方形:周长=边长×4 面积=边长×边长

字母公式: C=4a a= C÷4 S=a×a

平行四边形:面积=底×高

字母公式: S=ah h=S÷a

三角形:面积=底×高÷2 ——【底=面积×2÷高;高=面积×2

字母公式: S=ah÷2 h=2S÷a a=2S÷h

梯形:面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2 a=2S÷h-b b=2S÷h-a a+b=2S÷h h=2S÷(a+b)

24、平行四边形面积公式推导:剪拼、平移平行四边形可以转化成一个长方形;

25、三角形面积公式推导:旋转两个完全一样的三角形可以拼成一个平行四边形,

长方形的长相当于平行四边形的底;平行四边形的底相当于三角形的底;

长方形的宽相当于平行四边形的高;平行四边形的高相当于三角形的高;

长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的2倍,

因为长方形面积=长×宽,所以平行四边形面积=底×高。

因为平行四边形面积=底×高,所以三角形面积=底×高÷2

26、梯形面积公式推导:旋转

27、三角形、梯形的第二种推导方法老师已讲,自己看书

两个完全一样的梯形可以拼成一个平行四边形,知道就行。

平行四边形的底相当于梯形的上下底之和;

平行四边形的高相当于梯形的高;

平行四边形面积等于梯形面积的2倍,

因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;

等底等高的平行四边形面积是三角形面积的2倍。

29、长方形框架拉成平行四边形,周长不变,面积变小。

30、组合图形:转化成已学的简单图形,通过加、减进行计算。

第六单元统计与可能性

31、平均数=总数量÷总份数

32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。

第七单元数学广角

33、数不仅可以用来表示数量和顺序,还可以用来编码。

34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)

0 5 4 0 0 1

前3位表示邮区 前4位表示县(市) 最后2位表示投递局

35、身份证号码:18位

1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

河北省 邢台市 邢台县 出生日期 顺序码 校验码

倒数第二位的数字用来表示性别,单数表示男,双数表示女。

总复习练习

第一单元小数乘法

1、1.5×3表示( )或( )的简便运算。

2、1.5×1.8表示( )

3、一个数乘大于1的数,积比原来的数大;( )

4、一个数(0除外)乘小于1的数,积比原来的数小。( )

5、求近似数的方法一般有三种:( )( )( )

6、计算钱数,保留两位小数,表示计算到( )。保留一位小数,表示计算到( )

7、小数四则运算顺序跟( )是一样的。

8、运算定律和性质:

加法:加法交换律: 加法结合律:

减法: 减法性质:

乘法:乘法交换律: 乘法结合律:

乘法: 分配律:

除法: 除法性质:

第二单元小数除法

1、0.6÷0.3表示( )

2、2.5=50÷( )=( )÷50=( ) ×0.5

3、除法中的变化规律:①商不变性质:被除数和除数同时( )或( )相同的倍数(0除外),商不变。

4、被除数和除数同时扩大或缩小相同的倍数,商不变。( )

5、0.715712712712„„的循环节是( )0.5124121212„„的循环节是( )

第三单元观察物体

1、从不同的角度观察物体,看到的形状可能是相同的;( )

2、观察长方体或正方体时,从固定位置最多能看到( )个面。

第四单元简易方程

1、在含有字母的式子里,字母中间的( )号可以记作“·”,也可以省略不写。

但是,( )号、( )号( )号以及数与数之间的乘号不能省略。

2、a×a可以写作( )或( ),a 读作( )。 2a表示( )

3、( )等式称为方程。( )过程叫做解方程。

4、方程的解是一个( )

5、解方程原理:( )

6、10个数量关系式: 加法:和= 一个加数=

减法:差= 被减数= 减数=

乘法:积= 一个因数=

除法:商= 被除数= 除数=

7、所有的方程都是等式,但等式不一定都是等式。( )

第五单元多边形的面积

1、公式: 长方形:周长= 面积=

字母公式: C= S= b=

正方形:周长= 面积=

字母公式: C= S=

平行四边形:面积=

字母公式: S= h= a=

三角形:面积=

字母公式: S= h= a=

梯形:面积=

字母公式: S= a= b=

h=

2、等底等高的平行四边形面积相等;等底等高的三角形面积相等;( )

3、等底等高的平行四边形面积是三角形面积的( )倍。

4、平行四边形面积是三角形面积的2倍。( )

5、长方形框架拉成平行四边形,周长( ),面积( )。

第六单元统计与可能性

1、平均数=

2、中位数的优点是不受( )影响,用它代表全体数据的( ) 水平更合适。

3、(12、19、17、19、15、12、13、11、14、20)这些数据中,中位数是( ) 第七单元数学广角

1、数不仅可以用来表示数量和顺序,还可以用来( )

2、邮政编码:由( )位组成,前2位表示( )(直辖市、自治区)

0 5 4 0 0 1

前3位表示邮区 前4位表示县(市) 最后2位表示( )

3、身份证号码:( )位

1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

( ) 邢台市 邢台县 ( ) 顺序码 校验码

倒数第( )位的数字用来表示性别,单数表示( ),双数表示( )。

五年级上册数学期末整理与复习篇九:2015-2016学年新人教版小学五年级上册数学期末总复习知识点归纳

小学五年级数学上册期末复习知识点归纳

第一单元小数乘法

1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少。

1.5×1.8就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

一个数(0除外)乘1的数,积就得原来的数。

4、求近似数的方法一般有三种:(P10) ⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、(P11)小数四则运算顺序跟整数是一样的。

7、运算定律和性质: 加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c 乘法:乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c 除法:除法性质:a÷b÷c=a÷(b×c)

第二单元小数除法

8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。 注意:如果被除数的位数不够,在被除数的末尾用0补足。

11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。

13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复

出现,这样的小数叫做循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.

14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

第三单元观察物体

15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。 第四单元简易方程

16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。 加号、减号除号以及数与数之间的乘号不能省略。

17、a×a可以写作a•a或a ,a 读作a的平方。 2a表示a+a

18、方程:含有未知数的等式称为方程。 使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。

19、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。 20、10个数量关系式:

加法:和=加数+加数 一个加数=和-两一个加数

减法:差=被减数-减数 被减数=差+减数 减数=被减数-差

乘法:积=因数×因数 一个因数=积÷另一个因数

除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商

21、所有的方程都是等式,但等式不一定都是等式。

22、方程的检验过程: 方程左边=……

23、方程的解是一个数;

=…… 解方程式一个计算过程。

=方程右边

所以,X=…是方程的解。 第五单元多边形的面积

23、公式:

24、长方形:周长=(长+宽)×2 字母公式:C=(a+b)×2

长=周长÷2-宽

宽=周长÷2-长

面积=长×宽 S=ab

25、正方形:周长=边长×4 C=4a

面积=边长×边长 S=a

26、平行四边形:面积=底×高 S=ah

底=面积÷高 a = S ÷ h

高=面积÷底

27、三角形:面积=底×高÷2 字母公式: S=ah÷2

底=面积×2÷高;

高=面积×2÷底

28、梯形:面积=(上底+下底)×高÷2 S=(a+b)h÷2

高=面积×2÷(上底+下底) h = 2 S ÷ a

上底+下底=面积×2÷高 a + b= 2 S ÷h

上底=面积×2÷高-下底, a = 2 S ÷ h - b

下底=面积×2÷高-上底 b =2 S ÷ h - a

1、 长方形周长=(长+宽)×2 C = 2 ( a + b )

2、 长方形面积=长×宽 S = a b

3、 正方形周长=边长×4 C = 4 a

4、 正方形面积=边长×边长 S = a 2

5、 平行四边形面积=底×高 S = a h

6、 平行四边形底=面积÷高

7、 平行四边形高=面积÷底 h = S ÷ a

8、 三角形面积=底×高÷2 S = a h ÷ 2

9、 三角形底=面积×2÷高

10、 三角形高=面积×2÷底

11、 梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2

12、 梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )

13、 梯形上底=梯形面积×2÷高-下底

14、 梯形下底=梯形面积×2÷高-上底

29、平行四边形面积公式推导:剪拼、平移

平行四边形可以转化成一个长方形; 长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。

30、三角形面积公式推导:旋转

两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍,

因为平行四边形面积=底×高,所以三角形面积=底×高÷2

26、梯形面积公式推导:旋转

两个完全一样的梯形可以拼成一个平行四边形, 平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,

因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;

等底等高的平行四边形面积是三角形面积的2倍。

29、长方形框架拉成平行四边形,周长不变,高和面积变小。

30、组合图形:转化成已学的简单图形,通过加、减进行计算。

第六单元统计与可能性

31、平均数=总数量÷总份数

32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。 第七单元数学广角

33、数不仅可以用来表示数量和顺序,还可以用来编码。

34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)

0 5 4 0 0 1

前3位表示邮区

前4位表示县(市)

最后2位表示投递局

35、身份证号码:18位

1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

河北省 邢台市 邢台县 出生日期 顺序码 校验码

倒数第二位的数字用来表示性别,单数表示男,双数表示女。

第六单元 倍数与因数(我们只在自然数(0除外)范围内研究倍数和因数。)

1、像0、1、2、3、4、5、6……这样的数是自然数。

2、像-3、-2、-1、0、1、2、3……这样的数是整数。3、整数与自然数的关系:整数包括自然数。

4、倍数和因数: 举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的。

5、找倍数:从1倍开始有序的找。

6、一个数倍数的特点: ①一个数的倍数的个数是无限的;

②最小的倍数是它本身;

③没有最大的倍数。

7、找因数:找一个数的因数,一对一对有序的找较好。

8、一个数因数的特点: ①一个数的因数的个数是有限的;

②最小的因数是1;

③最大的因数是它本身。

9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数。

10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。

按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数

11、5的倍数的特征:个位是0或5的数是5的倍数。

12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数。

13、既是2的倍数又是5的倍数的特征:个位是0的数。

既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数;

②各个数位上的数字的和是3的倍数

既是3的倍数又是5的倍数的特征:①个位是0或5的数;

②各个数位上的数字的和是3的倍数

既是2的倍数又是3的倍数还是5的倍数的特征:

①个位是0的数;

②各个数位上的数字的和是3的倍数

9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数

14、质数:一个数只有1和它本身两个因数,这个数叫质数。

最小的质数是2,是唯一的质数中的偶数。

100以内的质数:

15、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。

1既不是质数也不是合数,最小的合数是4.

16、按一个数的因数个数分,自然数可以分为三类。

第二单元 图形的面积(一)

15、 1平方千米=100公顷=1000000平方米

16、 1公顷=10000平方米

17、 1平方米=100平方分米=10000平方厘米

第三单元 分数

1、 分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、 分母:表示平均分的份数。分子:表示取出的份数。

3、 分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做 分数。表示其中的一份的数,叫做这个分数的分数单位。

4、 真分数:分子小于分母的分数叫做真分数。真分数小于1。

5、 假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。

6、 带分数:由整数和真分数组成的分数叫做带分数。

7、 假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。

8、 整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。

9、 带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。

10、 质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

11 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=2×2×3

12、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。 13 互质:两个数的公因数只有1,这两个数叫做互质。

互质的规律:

(1) 相邻的自然数互质;

(2) 相邻的奇数都是互质数;

(3) 1和任何数互质;

(4) 两个不同的质数互质

(5) 2和任何奇数互质。

质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.

14、 几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

15、 求最大公因数,最小公倍数的方法

关系

最大公因数

最小公倍数

倍数关系

16、 分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的

分数是最简分数。

17、 约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过

程叫做约分。计算结果通常用最简分数表示。

18、 通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数

做分数的分母较简便。

19、 如何比较分数的大小:

分母相同时,分子大的分数大;

分子相同时,分母小的分数大;

分子分母都不同时,通分再比。

20、 分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分

五年级上册数学期末整理与复习篇十:2014最新苏教版五年级上册数学期末复习—单元知识点整理

第一章 多边形的面积

第一讲 平行四边形的面积

典型例题【C1】

(1)一个平行四边形的面积是8平方分米,如果它的底和高分别扩大到原来的3倍,它的面积变成( )平方分米?

(2)一个平行四边形的底是8厘米,高是2厘米,面积是( );如果底不变,高增加2厘米,则面积增加( );如果高不变,底扩大到原来的5倍,则面积扩大到原来的( )倍 典型例题【B1】

一个平行四边形的停车位底边长6米,高3米,它的面积为多少平方米?

练一练

1、一块平行四边形菜地,面积是250平方米,底边长20米,高是多少米?

2、一个长方形与一个平行四边形的面积相等,长方形的长是24厘米,宽是15厘米。平行四边形的高是20厘米,这个平行四边形的底是多少厘米?

典型例题【B2】

一个平行四边形的苗圃,底是50米,高是48米。如果每平方米育苗8株,这个苗圃一共能育苗多少株?

练一练

1、一个平行四边形停车场,底边长80米,高50米,如果平均每辆车占地16平方米,这个停车场最多能停多少辆车?

2、一块平行四边形的玉米地底是500米,高是50米,如果每1000平方米能收玉米10吨,这块地可收玉米多少吨?如果每吨玉米可卖1000元,这块地可收入多少万元?

典型例题【B3】

下图中正方形的周长是32cm,平行四边形的面积是多少?

1

、已知下图正方形的周长为36cm,求下图中平行四边形的面积。

1

2、如下图,在一块长80米、宽30米的长方形地上,修了两条宽分别为2米和3米的小路,其余的地方做草地,你知道草地的面积有多大吗?

课外作业

1、一个平行四边形的底是3分米,高是2分米,如果它的底和高同时扩大到原来的2倍后,面积变成( )平方分米,是原来面积的( )倍?

2、学校有一块平行四边形的草地,面积是667平方米,它的底是29米,高是多少米?

3、一块平行四边形的果园底是120米,高是80米。如果每4平方米可栽苹果树1棵,这个果园一共可以栽多少棵苹果树?

4、如下图,是一块长方形草地,长方形的长是16米,宽是10米,中间有两条宽2米的道路,一条是长方形,一条是平行四边形,那么有草部分(阴影部分)的面积有多大?

2

第二讲 三角形的面积

典型例题【C1】

(1)一个三角形与一个平行四边形同底等高,平行四边形的面积是56平方分米,三角形的面积是( )

(2)一个三角形的面积是48平方厘米,与它等底底高的平行四边形的面积是( )

(3)一个三角形与一个平行四边形的面积相等,底也相等,如果平行四边形的高是2分米,那么三角形的高是( )。

典型例题【B1】

平行四边形的底是24分米,高是5分米,与它等底等高的三角形面积是多少平方分米?

练一练

1、如下图,阴影部分的面积是15平方厘米,那么这个平行四边形的面积为多少平方厘米?

2、一个三角形的面积是12平方分米,底是4分米,它的高是多少分米?

典型例题【B2】

有一块三角形的玻璃,它的底是125分米,高是8分米,每平方米玻璃的价钱是68元,买这样一块玻璃要用多少钱?

练一练

1、广场中央有一块三角形的绿地,底是45米,高是24米,如果每棵树占地2平方米,这块绿地可植树多少棵?

2、一块三角形的麦地,底长55米,高是62米,这块麦地的面积是多少平方米?如果每平方米收小麦5千克 ,这块地一共可收小麦多少千克?

典型例题【B3】

如图,两个正方形边长分别为6分米和4分米,求图中阴影部分的面积?

练一练

3 1

1、如图,一个三角形的底长5米,如果底延长1米,那么面积就增加2平方米。问原来的三角形的面积是多少平方米

2、如图,是一张长方形卡纸和一张三角形卡纸重叠在一起的图形。已知长方形卡纸的面积比三角形卡纸的面积小16平方厘米,求DE的长度。

课外作业

1、一个直角三角形的面积是36平方厘米,它的一条直角边长9厘米,另一条直角边长多少厘米?

2、一块三角形钢板的面积是28平方米,底是8米,它的高是多少米?

3、一个三角形的鱼池,它的底是45米,高是50米,面积是多少平方米?如果每平方米可养鱼15条,这个鱼池一共可以养鱼多少条?

4、如图,ABCD是一个长12厘米,宽5厘米的长方形,求阴影部分三角形ACE的面积

第三讲 组合图形的面积

【例1】已知右面的两个正方形边长分别为6分米和4分米,求图中阴影部分的面积。

【例2】右图是两个相同的直角三角形叠在一起,求阴影部分的面积。(单位:厘米)

【例3】如图,这个长方形的长是9厘米,宽是8厘米,A和B是

4 宽的

点,求长方形内阴影部分的面积。

【例4】在右图中,三角形EDF的面积比三角形ABE的面积大6平方厘米,已知长方形ABDC的长和宽分别为6厘米、4厘米,DF的长是多少厘米?

【例5】右图是一块长方形公园绿地,绿地长24米,宽16米,中间有一条宽为2米的道路,求草地(阴影部分)的面积。

【例6】如图,三角形ABC的面积是24平方厘米,且DC=2AD,E、F分别是AF、BC的中点,那么阴影部分的面积是多少?

【例7】如图,三角形ABC的面积是90平方厘米,EF平行于BC,AB=3AE,那么三角形甲、乙、丙的面积各是多少平方厘米?

【例8】如图长方形,长18厘米,宽12厘米,AE、AF两条线段把长方形面积三等分,求三角形AEF的面积。

5

本文来源:http://www.guakaob.com/xiaoxue/119561.html