《梯形的面积》五年级数学上册教学案例分析及反思

| 五年级 |

【www.guakaob.com--五年级】

下面是中国招生考试网www.chinazhaokao.com小编为大家提供的《梯形的面积》五年级数学上册教学案例分析及反思,欢迎参考!

  《梯形的面积》五年级数学上册教学案例分析及反思

  教学目标

  1.在实际情境中,认识计算梯形面积的必要性。

  2.引导学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。

  3.结合数学“再创造”过程,培养学生观察、操作、比较等逻辑思维能力与初步的科学探究能力。

  4.通过小组合作学习,培养学生合作学习的能力。

  二.教材分析

  “梯形的面积”是在学生认识了梯形特征,掌握平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的。因此,教材没有安排用数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。

  三.学校及学生状况分析

  我校共有一千五百多名学生,六个年级,二十四个教学班。其中1—5年级全部使用北师大教材。我校班额容量较大,因此对于本课以小组合作,动手操作为主教学,这样设计有利于全班参与,更为学困生提供了思考的机会。其次有利于学生间的充分交流与合作,为探索出更多的方法提供了机会。当然,由于班额人数较多,因此在合作中给教师的指导也带来了一定的困难。

  四.教学设计

  (一)复习准备

  1.复习旧知,铺垫引导

  师:同学们还记得我们前两天学习的平行四边形和三角形的面积计算公式吗?还记得三角形的面积是怎样推导出来的吗?

  生:转化成平行四边形。

  (在学生说的同时,教师配以投影展示,让学生注意到图形的转化。)

  (点评:通过复习提问,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础。)

  师:同学们对前面的知识掌握的真不错。

  (二)新知探索

  (一)呈现实际情境,感受计算梯形面积的必要性

  师:这里有一个灌溉堤坝的横截面如下图,它的面积是多少?

  师:梯形的面积到底该怎么计算呢?今天,让我们共同来研究。(板书课题:梯形的面积)

  师:你认为我们该从哪儿入手研究呢?

  (学生思考片刻可能会回答:可以先转化为学过的图形)

  师:在我们生活中有很多这样的梯形,而且需要我们计算它的面积。那么到底该怎样计算它的面积呢?我有个建议,发挥小组的力量,共同合作探究。

  (点评:启发学生运用已学的知识,大胆提出猜测,激发学生的探索新知的欲望,又使学生明确了探索目标与方向。)

  (二)提供材料,自主探究图形的转化过程

  1、提出小组合作的要求

  师:下面我们共同来研究梯形的面积计算方法。小组全作的要求如下:

  a.利用你们小组的梯形学具,先独立思考能把它转化成已学过的什么图形。

  b.把你的方法与小组成员进行交流,共同验证。

  C.选择合适的方法交流汇报。

  2.自主探究,合作学习

  (学生小组合作讨论,动手操作,教师巡视参与并给以适当的指导。让部分小组上黑板展示)

  3.全班汇报交流

  师:同学们已经用不同的方法转化成了我们学过的图形,哪一个小组先派代表给同学们讲解,其他时小组的同学可以随时提问。

  生1:我们小组的方法是用两个相同的梯形拼成一个平行四边形。

  (学生边动手演示,边说转化过程,见下图。)

  生2:我们小组是把梯形沿两腰中点剪开,变成两个小梯形,再转化成平行四边形。

  生3:我们取了两个相同的直角梯形,因此,拼成的图形是长方形。

  (三)探索、归纳梯形的面积计算公式

  师:同学们介绍了各种方法,现以第一种转化为平行四边形为例(实物投影出示),这一个梯形和转化后的平行四边形有什么联系?怎样推导其面积公式?

  生:梯形上、下底的和等于拼成后平行四边形的底,梯形的高就是平行四边形的高。

  生:梯形的面积是所拼平行四边形面积的一半。

  生:梯形的面积=(上底+下底)×高÷2

  (教师板书梯形面积计算公式)

  师:一个梯形的面积为什么要除以2 ?

  生:因为拼成的平行四边形有两个梯形,求一个梯形就需要除以2。

  师:请同学们再任选一种转化方法进行推导,验证梯形的面积计算公式和刚才的是否一致。

  师:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式应怎样表示?

  板书:S=(a+b)h÷2

  (学生在得出梯形面积的计算公式后,安排计算堤坝横截面的面积)

  (点评:这部分内容是这一节课的重点,也是难点。在激发起了学生的探究欲望后,采用了小组合作学习这种方式,让他们主动探究、大胆猜测、积极验证的教学方法。使学生在数学学习活动中相互合作,主动探索,真正处于课堂教学的主体地位,把新知识转化为旧知识。新知、旧知有机的融为一体,让学生通过实际操作来推导出梯形的面积计算公式并运用公式进行计算,整个过程都由学生自己来完成,使学生从中体验到了成功的喜悦。)

  (三)联系实际,巩固运用

  1.试一试

  引入:梯形的用途很广泛,在很多物体中都经常看到梯形。下面我们来解决一些日常中的问题,计算下列梯形的面积

  (1)出示篮球场的罚球区图形,请计算出罚球区的面积。

  (2)出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?

  2.练一练第1、2、3题,让学生独立完成。

  3.思考题

  我们经常见到圆木,钢管等堆成下图的形状(了示课本第28页第4题),求图中圆木的总根数,你有几种解答方法?

  (四)课堂小结

  师:通过今天的上课,谈谈你的收获。

  五.教学反思

  这节课从学生的生活实际问题出发,一开始我就让学生感受到学习梯形面积计算的必要性,从而引发学生探究梯形面积的学习欲望。在这种强烈的学习欲望下,学生调动自己已有的知识经验,探究出了很多种方法,自己解决了数学问题,体验到了收获的快乐,既培养了创新思维能力,又增强了自主学习的能力。在经历了平行四边形和三角形的面积计算公式推导过程的体验基础上,教学这部分内容时,我放手让学生自主探究新知,并引导学生从不同途径验证,学生参与的积极性高,课堂生动活泼,效果显著。具体情况如下:

  一、提出问题,激发兴趣

  我先出示了一个梯形,引导学生简要复习梯形的基本特征和各部分的名称,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?

  学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。

  二、注重合作,促进交流

  学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。

  这时,我提醒他们:“小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的图形各部分之间有什么联系?这样就容易发现梯形的面积公式了!”

  学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。

  三、思维拓展,能力提升

  新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?

  开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的梯形,就不失时机地提醒他:“你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?”学生兴趣盎然。很快就表示出两个三角形的面积,即:上底×高÷2 、 下底×高÷2,于是引导学生把两个算式加起来,从而推导出梯形面积公式便成为可能,因为学生在四年级时已经学过类似的乘法分配率的知识,所以可以看出大多数学生还是理解了。

  很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的推理论证,教学活动到这时达到一个高潮。

  由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。

  当然,由于学生在探索中出现多种方法,因此,整节课就显得十分地紧张,有些推导的方法也不够让学生进行深入的交流。

  六.案例点评

  《数学课程标准》指出:动手实践、自主探索与合作交流是学生学习数学的重要方式,本课的教学应该说较好地落实了这一理念。具体体现在:

  1.学习方式的变化是本节课最突出的一个特点。如:在“探索新知”这一环节中,改变了过去由教师讲解、代替学生操作的传统教学方式。通过“动手实践—小组内交流—选择可行的方法”这样三个步骤,完成了转化和归纳的全过程。突出体现了“学生是学习的主人”这一新理念。充分调动了学生学习的主动性,激发了学生探究的欲望。使学生在不断地探索、合作、交流中经历了知识的形成与发展的全过程,并从中体会到了探究所带来的乐趣。

  2.第二个突出的特点是把所学知识与实际生活紧密联系起来。如练习题的设计就突出体现了这一点。通过计算学生比较熟悉的篮球场中的罚球区图形的面积,某些汽车侧面的玻璃面积等实际生活中的问题,使学生体会到数学与生活的联系。培养了学生用数学眼光认识事物,应用数学的意识,从而进一步体会数学的应用价值。

  不足之处:学生手中的梯形学具应具有多样性(大小不同;大小相同;形状不同;形状相同),让学生在动手操作转化的过程中去体会:“两个完全一样的梯形”这一条件的重要性。

本文来源:http://www.guakaob.com/xiaoxue/464958.html

    热门标签

    HOT