五年级奇偶数练习

| 五年级 |

【www.guakaob.com--五年级】

五年级奇偶数练习(一)
2015小学五年级数的奇偶性练习题及答案

2015小学五年级数的奇偶性练习题及答案

基础作业

不夯实基础,难建成高楼。

1. 小玲和小平打羽毛球,小玲发球,假如2分钟内两人接球没有间断。

(1)完成下面的表格。

(2)第10次接球的是小玲还是小平?( )

(3)第29次接球的是小平,对吗?( )

2. 填一填。

(1)如果用n表示自然数,那么2n一定是( )数,2n+1一定是( )数。

(2)任意两个奇数的和是( )数,差是( )数,积是( )数。

(3)任意两个偶数的和是( )数,差是( )数,积是( )数。

(4)任意一个奇数和一个偶数的和是( )数,积是( )数。

3. 晚上要开电灯,淘气一连按了7下开关。请你说说这时灯是开的?还是关的?如果按16下呢?

4. 翻硬币游戏。

-----欢迎登陆明师在线浏览更多的学习资讯!-----

综合提升

重点难点,一网打尽。

5. 猜一猜,算一算。

下面几道题的结果是奇数还是偶数?

2567+345 ( )

8758-999 ( )

2+4+8+10+12+……+98+100 ( )

1+2+3+4+……+99+100 ( )

6. 张云按一定的规律画图形(如下图)。

☆☆□☆☆△☆☆□☆☆△……

(1)第3个图形是( );第5个图形是( );第15个图形是( );第25个是( )。

(2)图形所在位置是3的奇数倍数的是( )形,图形所在位置是3的偶数倍数的是( )形。

7. 选卡片游戏。

有15张卡片,其中有3张写着1,有3张写着2,有5张写着3,有4张写着4。

(1)从中选出两张,这两张的和是偶数,这两张卡片上可能写着什么?

(2)从中选出两张,这两张的和是奇数,这两张卡片上可能写着什么?

(3) 从中选出两张,这两张的差是奇数,这两张卡片上可能写着什么?

拓展探究

举一反三,应用创新,方能一显身手。

8.按要求填数。

(1)和为奇数

-----欢迎登陆明师在线浏览更多的学习资讯!-----

265+37□,□里可填( )。

28□+268,□里可填( )。

(2)和为偶数

265+37□,□里可填( )。

28□+268,□里可填( )。【五年级奇偶数练习】

9.三个杯子,杯口全部朝上放在桌上。每次翻动2个杯子,经过若干次翻动,能否使三个杯子全部杯口朝下吗?

参考答案

1. (1)提示:单数次是小平,双数次是小玲。

(2)小玲 (3)对

2.(1)偶 奇 (2)偶 偶 奇 (3)偶 偶 偶 (4)奇 偶

3. 开的 关的

4. 反面 正面

5.偶数 奇数 偶数 偶数

6.(1)□ ☆ □ ☆ (2)□ △

7.略

8.(1)0,2,4,6,8 1,3,5,7,9

(2)1,3,5,7,9

0,2,4,6,8

9.不能使3个杯子的杯口全部朝下。提示:开始杯口朝上的杯子个数是3,为奇数。第1次翻动后,杯口朝上的变为1,仍为奇数。第2次翻动只能有两个杯子改变上下方向,所以杯口朝上的杯子数仍是奇数。因此无论怎么翻动多少次,杯口朝上的杯子数永远是奇数。

-----欢迎登陆明师在线浏览更多的学习资讯!-----

五年级奇偶数练习(二)
五年级奥数测试卷-奇数偶数-答案

A

填空:

1、如果甲数是奇数,那么甲数-3和甲数+4分别是( )和( )(填奇数或偶数)。

2、一个自然数乘以一个偶数,积是( )(填奇数或偶数)。

3、一个质数自乘6次再加上3仍是一个质数,那么这个质数自乘3次再加上3是( )。

4、一个自然数,分别与它相邻的两个偶数相乘。所得的两个积相差200,这个数是( )。

5、某学校举行数学竞赛,试卷共有20道题目,规定评分标准是:答对一题给3分,不答给1分,答错一题倒扣1分。那么,无论有多少人参加,所有竞赛学生的得分的总和一定是( )(填奇数或偶数)。

6、从3开始,依据后一数是前一数加上3,写出2000个数,排成一行:3,6,9,12,15,18,21,…在这行数中第1995个数是( )(填奇数或偶数)。

解答题:

7、在30到100中,所有3的倍数的数的和是奇数还是偶数?

8、有一串数,最前面的四个数依次是1、9、8、8,从第5个数起,每一个数都是它前面的四个数之和的个位数字。那么在这一串数中,会依次出现1、9、9、4这4个数吗?为什么?

B

填空:

1、前500个非0自然数中,共有( )个奇数,( )个偶数。

2、两个相邻的奇数的和乘它们的差得216,则这两个奇数是( , )。

3、连续三个偶数的乘积是其中最大偶数的48倍,则这三个偶数的乘积是( )。

4、三个相邻的偶数的乘积是一个六位数8××××2,这三个偶数依次是( 、 、 、)。

5、一串数排成一行:

1,1,2,3,5,8,13,21,34,55,…

到这串数的第2000个为止,共有( )个偶数。

6、1995个球,任意分成若干堆,则球的个数为奇数的堆数必是( )。(填奇数或偶数)

7、一个数分别与另外两个相邻奇数相乘,所得两个积相差100,这个数是( )。

8、从3开始,依据后一数是前一数加上3,写出2000个数,排成一行:3,6,9,12,15,18,21,…在这行数中第1999个数是( )(填奇数或偶数)。

解答题:

9、有12张卡片,其中有3张上面写着1,有3张上面写着3,有3张上面写着5,有3张上面写着7。你能否从中选出五张,使它们上面的数字和为20?为什么?

10、某展览会有16个展室,(如图)每两个相邻展室之间均有门相同。问:能否从入口进去,不重复地参观完全部展室后,从出口出来?

A

1、偶数,奇数。2、偶数。3、11。4、50。5、偶数。6、偶数。7、偶数。8、不会出现。因为这串数的奇偶排列规律是:奇奇偶偶

B

1、250,250。2、53,55。3、480。4、94,96,98。5、666。6、奇数。7、50或25。8、奇数。9、不能。因为5个奇数的和为奇数,不可能等于20。10、不能。将每个房间奇偶相间编号,入口和出口的奇偶性相同了,根据一笔画原理,入口和出口奇偶性必须不相同才能按要求做到。

五年级奇偶数练习(三)
奇数与偶数练习题A(五年级奥数)

五年级奥数:奇数与偶数(A)

年级 班 姓名 得分

一、填空题

1. 2,4,6,8,„„是连续的偶数,若五个连续的偶数的和是320,这五个数中最小的一个是______.

2. 有两个质数,它们的和是小于100的奇数,并且是17的倍数.这两个质数是_____.

3. 100个自然数,它们的和是10000,在这些数里,奇数的个数比偶数的个数多,那么,这些数里至多有_____个偶数.

4. 右图是一张靶纸,靶纸上的1、3、5、7、9表示射中该靶区的分数.甲说:我打了六枪,每枪都中靶得分,共得了27分.乙说:我打了3枪,每枪都中靶得分,共得了27分.

已知甲、乙两人中有一人说的是真话,那么说假话的是_____.

5. 一只电动老鼠从右上图的A点出发,沿格线奔跑,并且每到一个格点不是向左转就是向右转.当这只电动老鼠又回到A点时,甲说它共转了81次弯,乙说它共转了82次弯.如果甲、乙二人有一人说对了,那么谁正确?

6. 一次数学考试共有20道题,规定答对一题得2分,答错一题扣1分,未答的题不计分.考试结束后,小明共得23分.他想知道自己做错了几道题,但只记得未答的题的数目是个偶数.请你帮助小明计算一下,他答错了_____道题.

7. 有一批文章共15篇,各篇文章的页数分别是1页、2页、3页„„14页和15页的稿纸,如果将这些文章按某种次序装订成册,并统一编上页码,那么每篇文章的第一页是奇数页码的文章最多有_____篇.

8. 一本书中间的某一张被撕掉了,余下的各页码数之和是1133,这本书有_____页,撕掉的是第_____页和第_____页.

9. 有8只盒子,每只盒内放有同一种笔.8只盒子所装笔的支数分别为17支、23支、33支、36支、38支、42支、49支、51支.在这些笔中,圆珠笔的支

1数是钢笔的支数的2倍,钢笔支数是铅笔支数的,只有一只盒里放的水彩笔.这3

盒水彩笔共有_____支.

10. 某次数学竞赛准备了35支铅笔作为奖品发给一、二、三等奖的学生,原计划一等奖每人发给6支,二等奖每人发给3支,三等奖每人发给2支,后来改为一等将每人发13支,二等奖每人发4支,三等奖每人发1支.那么获二等奖的有_____人.

二、解答题

11.如下图,从0点起每隔3米种一棵树.如果把3块“爱护树木”的小木牌分别挂在3棵树上,那么不管怎么挂,至少有两棵挂牌树之间的距离是偶数(以米为单位).试说明理由.

3 6 9 12 15 18 21 24 0

12. 小地球仪上赤道大圆与过南北极的某大圆相交于A、B两点.有黑、白二蚁从A点同时出发分别沿着这两个大圆爬行.黑蚁爬赤道大圆一周要10秒钟,白蚁爬过南北极的大圆一周要8秒钟.问:在10分钟内黑、白二蚁在B点相遇几次?为什么?

13.如右图所示,一个圆周上有9个位置,依次编为1~9号.现在有一个小球在1号位置上,第一天顺时针前进10个位置,第二天逆时针前进14个位置.以后,第奇数天与第一天相同,顺时针前进10个位置,第偶数天与第二天相同,逆时针前进14个位置.问:

至少经过多少天

,小球又回到1号位置.

14.

【五年级奇偶数练习】

中填入一个自然数(可以相同),使得任意两个相邻的 ),恰好等于它们之间所标的数字.能否办到?为什么?

———————————————答 案——————————————————————

1. 60

这五个连续偶数的第三个(即中间的那一个)偶数是3205=64.所以,最小的偶数是60.

2. 2,83

因为两个质数的和是奇数,所以必有一个是2.小于100的17的奇数倍有17,51和85三个,17,51与2的差都不是质数,所以另一个质数是85-2=83.

3. 48

由于100个自然数的和是10000,即100个自然数中必须有偶数个奇数,又由于奇数比偶数多,因此偶数最多只有48个.

4. 甲

由于分数都是奇数,6个奇数之和为偶数,不可能是奇数27,所以说假话的是甲.

5. 甲【五年级奇偶数练习】

因为老鼠遇到格点必须转弯,所以经过多少格点就转了多少次弯.如右图所示,老鼠从黑点出发,到达任何一个黑点都是转奇数次弯,所以甲正确.

6. 3

小明做错的题的数目一定是奇数个,若是做错1个,则应做对12个才会得

122-1=23分,这样小明共做13个题,未做的题的个数7不是偶数;若是做错3个,则应做对13个才能得132-3=23分,这样未答的题是4个,恰为偶数个.此外小明不可能做错5个或5个以上的题.故他做错的题有3个.

7. 11【五年级奇偶数练习】

根据奇数+偶数=奇数的性质,先编排偶数页的文章(2页,4页,„,14页),这样共有7篇文章的第一页都是奇数页码.

然后,编排奇数页的文章(1页,3页,„,15页),根据奇数+奇数=偶数的性质,这样编排,就又有4篇文章的第一页都是奇数页码.

所以,每篇文章的第一页是奇数页码的文章最多是7+4=11(篇).

8. 48,21,22

设这本书的页码是从1到n的自然数,正确的和应该是

11+2+„+n=n( n+1) 2

由题意可知,1n( n+1)>1133 2

11由估算,当n=48时,n( n+1)=4849=1176,1176-1133=43.根据书22

页的页码编排,被撕一张的页码应是奇、偶,其和是奇数,43=21+22.所以,这本书有48页,被撕的一张是第21页和第22页.

9. 49

依题意知,若钢笔为1份,则圆珠笔为2份,铅笔为3份,也就是说,这三种笔的总支数一定是6的倍数,即能同时被2和3整除.又因为8只盒子中有3只盒子装的笔的支数是偶数,5只盒子装的笔的支数是奇数,根据偶数+奇数=奇数,可知装有铅笔、圆珠笔、钢笔的7只盒子一定有3只盒子里装有偶数支笔,4支盒子里面装有奇数支笔,装有水彩笔的盒子一定装有奇数支笔.把8只盒子所装笔支数的数字分别加起来:

1+7+2+3+3+3+3+6+3+8+4+2+4+9+5+1=64

因为64-(4+9)=51正好能被3整除,所以装有水彩笔的盒子共装有49支.

10. 3

首先根据“后来改为一等奖每人发13支”,可以确定获一等奖的人数不大于

3.否则仅一等奖就要发不小于39支铅笔,已超过35支,这是不可能的.其次分别考虑获一等奖有2人或者1人的情况:

当获一等奖有2人时,那么按原计划发二、三等奖的铅笔数应该是

35-62=23,按改变后发二、三等奖的铅笔数应该是35-132=9.因为23是奇数,按原计划发三等奖每人2支铅笔,则发三等奖的铅笔总数必为偶数,所以发二等奖的铅笔总数只能是奇数,于是获二等奖的人数也必是奇数.又根据改变后“二等奖每人发4支”,可以确定获二等奖的人数仅1人(否则仅二等奖就要发超过9支铅笔了),经检验,这是不可能的,这就是说,获一等奖不会是2人.

当获一等奖有1人时,那么按原计划发二、三等奖的铅笔数应是35-6=29,按改变后发二、三等奖的铅笔数应是35-13=22.因为29仍是奇数,类似前种情况的讨论,可以确定获二等奖的人数必定是奇数.又根据改变后“二等奖每人发4支”,且总数不超过22支,我们能够推知二等奖人数不会超过5,经检验,只有

获二等奖是3人才符合题目要求.

11. 相距最远的两块木牌的距离,等于它们分别与中间一块木牌的距离之和.如果三块木牌间两两距离都是奇数,就会出现“奇+奇=奇”,这显然不成立,所以必有两块木牌的距离是偶数.

12. 相遇0次.(黑、白二蚁永不能在B点相遇)

黑蚁爬半圆需要5秒钟,白蚁爬半圆需要4秒钟,黑、白二蚁同时从A点出发,要在B点相遇,必须满足两个条件:①黑、白二蚁爬行时间相同,②在此时间内二蚁爬行奇数个半圆.但黑蚁爬行奇数个半圆要用奇数秒(5奇数),白蚁爬行奇数个半圆要用偶数秒(4奇数),奇数与偶数不能相等.所以黑、白二蚁永远不能在B点相遇.

13. 顺时针前进10个位置,相当于顺时针前进1个位置;逆时针前进14个位置,相当于顺时针前进18-14=4(个)位置.所以原题相当于:顺时针每天1个位置,4个位置交替前进,直到前进的位置个数是9的倍数为止.

偶数天依次前进的位置个数:

5,10,15,20,25,30,35,401,6,11,16,21,26,31,36 ,41,„„

第15天前进36个位置,36天是9的倍数,所以第15天又回到1号位置。

14. 不能.

如果能,设最上面中的数是奇数(见下图),由

奇数奇数=偶数;

偶数偶数=偶数;

奇数偶数=奇数,

中又应是偶数,矛盾.

当最上面中是偶数时,.

五年级奇偶数练习(四)
五年级奥数测试卷-奇数偶数-答案

A

填空:

1、如果甲数是奇数,那么甲数-3和甲数+4分别是( )和( )(填奇数或偶数)。

2、一个自然数乘以一个偶数,积是( )(填奇数或偶数)。

3、一个质数自乘6次再加上3仍是一个质数,那么这个质数自乘3次再加上3是( )。

4、一个自然数,分别与它相邻的两个偶数相乘。所得的两个积相差200,这个数是( )。

5、某学校举行数学竞赛,试卷共有20道题目,规定评分标准是:答对一题给3分,不答给1分,答错一题倒扣1分。那么,无论有多少人参加,所有竞赛学生的得分的总和一定是( )(填奇数或偶数)。

6、从3开始,依据后一数是前一数加上3,写出2000个数,排成一行:3,6,9,12,15,18,21,…在这行数中第1995个数是( )(填奇数或偶数)。

解答题:

7、在30到100中,所有3的倍数的数的和是奇数还是偶数?

8、有一串数,最前面的四个数依次是1、9、8、8,从第5个数起,每一个数都是它前面的四个数之和的个位数字。那么在这一串数中,会依次出现1、9、9、4这4个数吗?为什么?

B

填空:

1、前500个非0自然数中,共有( )个奇数,( )个偶数。

2、两个相邻的奇数的和乘它们的差得216,则这两个奇数是( , )。

3、连续三个偶数的乘积是其中最大偶数的48倍,则这三个偶数的乘积是( )。

【五年级奇偶数练习】

4、三个相邻的偶数的乘积是一个六位数8××××2,这三个偶数依次是( 、 、 、)。

5、一串数排成一行:

1,1,2,3,5,8,13,21,34,55,…

到这串数的第2000个为止,共有( )个偶数。

6、1995个球,任意分成若干堆,则球的个数为奇数的堆数必是( )。(填奇数或偶数)

7、一个数分别与另外两个相邻奇数相乘,所得两个积相差100,这个数是( )。

8、从3开始,依据后一数是前一数加上3,写出2000个数,排成一行:3,6,9,12,15,18,21,…在这行数中第1999个数是( )(填奇数或偶数)。

解答题:

9、有12张卡片,其中有3张上面写着1,有3张上面写着3,有3张上面写着5,有3张上面写着7。你能否从中选出五张,使它们上面的数字和为20?为什么?

10、某展览会有16个展室,(如图)每两个相邻展室之间均有门相同。问:能否从入口进去,不重复地参观完全部展室后,从出口出来?

A

1、偶数,奇数。2、偶数。3、11。4、50。5、偶数。6、偶数。7、偶数。8、不会出现。因为这串数的奇偶排列规律是:奇奇偶偶

B

1、250,250。2、53,55。3、480。4、94,96,98。5、666。6、奇数。7、50或25。8、奇数。9、不能。因为5个奇数的和为奇数,不可能等于20。10、不能。将每个房间奇偶相间编号,入口和出口的奇偶性相同了,根据一笔画原理,入口和出口奇偶性必须不相同才能按要求做到。

五年级奇偶数练习(五)
五年级(下)数学奇数和偶数练习

五年级(下)数学练习

班级( )姓名( )得分( ) 奇数和偶数

(1) 按要求在□内填入一个数字

使它同时被2、3整除:7□6 31□

使它同时被2、3、5整除:36□ 8□5□

(2) 填空:

a一个奇数如果( ),结果一定是偶数。

b三个连续的偶数的和是36,这三个数分别是( )、 ( )、( )。

c 100以内同时被3、5整除的整数中,最大的奇数是

( ),最小的偶数是( ),最小的奇数是

【五年级奇偶数练习】

( )。

(3)选择

一个梯形,上底下底的长度都是奇数,高的长度是偶数,那么 梯形的面积一定是( )。

A 奇数 B 偶数

质数、合数和1、 质因数、分解质因数

(1)选择适当的数填空

在1、2、3、4、6、12中:

质数有( );

12的因数有( );

12的质因数有( );

是互质数的有( )和( )

(2)填空

a三个质数相乘的积是30,这三个质数分别是( ), ( ),( )。

b一个三位数,百位上的数字既不是质数又不是合数,十位上 的数字是最小的合数,个位上的数字既是合数又是奇数,这 个三位数是( ) 。

c 相邻两个自然数相乘的积是210,这相邻两个自然数是 ( )和( )

(3)选择

100以内同时含有质因数3和5的合数一共有( )个

A、2 B、4 C、6 D、8

约数和倍数 、最大公约数、最小公倍数、互质数

(1) 直接写出下列各组数的最大公约数和最小公倍数

5和7 36和9 12和5 60和15

(2)填空

a 如果A=2×3×3,B=3×3×5,则A、B的最大公约数是( ),最小公倍数是( )。

b 已知两个互质数的最小公倍数是123,这两个互质数是( )和( )或( )和( )

c 三个数40、68和96分别除以一个自然数a,所得的余数都为5,则这个自然数a是( )。

(3)选择

a=2×2×3×5 b=2×2×2×3×5,a和b的最大公约数是

( ),a和b的最小公倍数是( ).

A a B b C ab D 1

本文来源:http://www.guakaob.com/xiaoxue/521744.html