【www.guakaob.com--一年级】
2014年八年级数学(下)
期末调研检测试卷(含答案)
一、选择题(本题共10小题,满分共30分)
1.二次根式2、12 、30 x+2 、40x2、x2y2中,最简二次根
式有( )个。
A、1 个 B、2 个 C、3 个 D、4个
2.
x的取值范围为( ). A、x≥2 B、x≠3 C、x≥2或x≠3 D、x≥2且x≠3
3.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )
A.7,24,25 111113,4,54,7,822 B.222 C.3,4, 5 D.
4、在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是( )
(A)AC=BD,AB∥CD,AB=CD (B)AD∥BC,∠A=∠C
(C)AO=BO=CO=DO,AC⊥BD (D)AO=CO,BO=DO,AB=BC
5、如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=( )
AFD
1
BE
A.40° B.50° C.60° D.80°
6、表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是( )
7.如图所示,函数y1x和y2
时,x的取值范围是( ) 14x的图象相交于(-1,1),(2,2)两点.当y1y233
A.x<-1 B.—1<x<2 C.x>2 D. x<-1或x>2
28、 在方差公式S221x1xx2xxnxn中,下列说法不正确的是2
( )
A. n是样本的容量 B. xn是样本个体 C. x是样本平均数 D. S是样本方差
9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )
(A)极差是47
(B)众数是42 (C)中位数是58
(D)每月阅读数量超过40的有4个月
10、如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为【 】 A
F5A. 4
5C. 3
5B. 26D. 5 EBP二、填空题(本题共10小题,满分共30分)
0 11.48
-+-3-32= 3(31)
1
12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( )
13. 平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD= cm。
14.在直角三角形ABC中,∠C=90°,CD是AB边上的中线,∠A=30°,AC=5 ,则△ADC的周长为 _。
15、如图,平行四边形ABCD的两条对角线AC、BD相交于点O,AB= 5 ,AC=6,DB=8 则四边形ABCD是的周长为 。
D
A
BC
16.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= .
17. 某一次函数的图象经过点(1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式______________________.
18.)某市2007年5月份某一周的日最高气温(单位:℃)分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值是_______
19.为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是 (选填“甲”或“乙)
20.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°„按此规律所作的第n个菱形的边长是 .
三.解答题:
x22x19x9x21. (7分)已知,且x为偶数,求(1x)的值 2x6x1x6
22. (7分)在△ABC中,∠C=30°,AC=4cm,AB=3cm,求BC的长.
23. (9分) 如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.
(1)求证:四边形DEGF是平行四边形;
(2)当点G是BC的中点时,求证:四边形DEGF是菱形.
24. (9分) 小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终
点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180 m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.
⑴小亮行走的总路程是____________㎝,他途中休息了________min.
⑵①当50≤x≤80时,求y与x的函数关系式;
②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?
2015最新八年级下册数学期中测试卷 成绩________
一、选择答案:(每题3分,共30分)
1、下列二次根式中,属于最简二次根式的是( )
A.
1
2
B. .8 C. 4 D.
2、x3有意义的条件是( ) A.x>3 B. x>-3 C. x≥-3 D.x≥3 3、正方形面积为36,则对角线的长为(
)
A.6 B.
C.9 D.
4、等腰梯形的两底之差等于腰长,则腰与下底的夹角为( )
A. 120° B. 60° C. 45° D. 50° 5、下列命题中,正确的个数是( )
①若三条线段的比为1:1:2,则它们组成一个等腰直角三角形;②两条对角线相等的平行四边形是矩形;③对角线互相垂直的四边形是菱形;④有两个角相等的梯形是等腰梯形;⑤一条直线与矩形的一组对边相交,必分矩形为两个直角梯形。 A、2个 B、3个 C、4个 D、5个
6、6.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是( )
A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:2
7、如图,在□ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC于( )(A)1cm (B)2cm (C)3cm (D)4cm
8、如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( ) A.12
B.16
C.20
D.24
9、如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D’处,则重叠部分△AFC的面积为. ( ) A.6
B.8 C.10
D.12
10、如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=( ) A.45° B.30° C.60° D.55°
C
F B D
二、填空:(每题2分,共20分)
11、ABCD中一条对角线分∠A为35°和45°,则∠度。 12、矩形的两条对角线的夹角为600,较短的边长为12cm,则对角线的长
为__________cm.
13、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m,当它把绳子的下端拉开
5m后,发现下端刚好接触地面,则旗杆的高为 14、已知菱形的两条对角线长为8cm和6cm,那么这个菱形的周长是面积是
cm2.
15、在平面直角坐标系中,点A(-1,0)与点B(0,2)的距离是_______。
16、 如图,每个小正方形的边长为1.在ABC中,点D为AB的中点,则线段CD的长
为 ;
17、如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F。且AD交EF于O,则∠AOF= 度. 18、9.若实数a、b满足a2b40,则
a
b
C
19、在正方形ABCD中,E在BC上,BE=2,CE=1,P是BD上的动点,则
PE和PC的长度之和最小
是_____________.
20、
请你找出 其中规律,并将第n(n≥1)个等式写出来 . 三、 解答题:(共50分)
21、(1)2(272) (2).22322
3
5
1
22.化简求值:
÷
·
,其中a=
-2.【八年级下册武威数学期末试卷及答案】
23、 如图,已知□ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F. 求证:
AF=EC
证明:
24、已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).
(1)四边形EFGH的形状是 ,证明你的结论.
(2)当四边形ABCD的对角线满足 条件时,四边形
EFGH是矩形; (3)你学过的哪种特殊四边形的中点四边形是矩
形? .
25、(6分)如图,一架长为5米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子底端距离墙ON有3米。
NN①求梯子顶端与地面的距离OA的长。 ②若梯子顶点A下滑1米到C点, 求梯子的底端向右滑到D的距离。 :
MM
26、(3分)现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方
形.要求:在图①中画出分割线并在图②正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形. 图①
图②
27、(6分)已知:如图,ABC中,ACB90,点D、E分别是AC、AB的中点,点F在BC的延长线上,且CDFA. 求证:四边形DECF是平行四边形. 证明:
28、 2013如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC。 (1)求证;OE=OF;
(2)若BC=2,求AB的长。
2
期末综合检测
一、选择题(每小题3分,共30分) 1.(2013·鞍山中考)要使式子A.x>0
B.x≥-2
有意义,则x的取值范围是( ) C.x≥2
D.x≤2
2.矩形具有而菱形不具有的性质是( )
A.两组对边分别平行 B.对角线相等 C.对角线互相平分 3.下列计算正确的是( ) A.
×D.
=4
B.
+
=
C.
÷
=2
D.两组对角分别相等
=-15
4.(2013·陕西中考)根据表中一次函数的自变量x与函数y的对应值,可得p的值为( )
A.1
B.-1
C.3
D.-3
5.(2013·盐城中考)某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )
A.2400元、2400元 C.2200元、2200元
B.2400元、2300元 D.2200元、2300元
6.四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( ) A.AB∥DC,AD∥BC C.AO=CO,BO=DO
B.AB=DC,AD=BC
D.AB∥DC,AD=BC
7.(2013·巴中中考)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是
1
( ) A.24
B.16 C.4
D.2
8.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为(
)
A.
B.2
C.3
D.4
9.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是(
)
10.(2013·黔西南州中考)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( ) A.x< C.x>
B.x<3 D.x>3
二、填空题(每小题3分,共24分)
11.计算:-= .
12.(2013·恩施州中考)函数y=的自变量x的取值范围是 .
+|a-b|=0,则△ABC的形状
13.已知a,b,c是△ABC的三边长,
且满足关系式为 .
14.(2013·十堰中考)某次能力测试中,10人的成绩统计如下表,则这10人成绩的平均数为 .
2
15.(2013·资阳中考)在一次函数y=(2-k)x+1中,y随x的增大而增大,则k的取值范围为 . 16.如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,请添加一个条件 ,使四边形AECF是平行四边形(只填一个即可). 17.(2013·泉州中考)如图,菱形ABCD的周长为8
,对角线AC和BD相交于点O,AC∶
BD=1∶2,则AO∶BO= ,菱形ABCD的面积S= .
18.(2013·上海中考)李老师开车从甲地到相距240km的乙地,如果油箱剩余油量y(L)与行驶里程x(km)之间是一次函数关系,其图象如图所示,那么到达乙 地时油箱剩余油量是 L. 三、解答题(共66分)
19.(10分)计算:(1)9
(2)(2
-1)(
+7-5+2.
+1)-(1-2).
2
20.(6分)(2013·荆门中考)化简求值:
÷·,其中a=-2.
21.(6分)(2013·武汉中考)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.
3
22.(8分)(2013·宜昌中考)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF. (1)请你判断所画四边形的形状,并说明理由. (2)连接EF,若AE=8cm,∠A=60°,求线段EF的长.
23.(8分)(2013·昭通中考)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形.
(2)当AM为何值时,四边形AMDN是矩形?请说明理由.
24.(8分)(2013·鄂州中考)小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A,B两点,测量数据如图,其中矩形CDEF表示楼体,
AB=150m,CD=10m,∠A=30°,∠B=45°(A,C,D,B四点在同一直线上),问: (1)楼高多少米?
(2)若每层楼按3m计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:1.41,
≈2.24)
≈1.73,
≈
25.(10分)(2013·株洲中考)某生物小组观察一植物生长,得到植物高度y(单位:cm)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴).
(1)该植物从观察时起,多少天以后停止长高?
(2)求直线AC的解析式,并求该植物最高长多少厘米? 26.(10分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:
甲、乙射击成绩统计表
4
甲、乙射击成绩折线图
(1)请补全上述图表(请直接在表中填空和补全折线图). (2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由.
(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?
答案解析
1.【解析】选D.根据题意得2-x≥0,解得x≤2.
2.【解析】选B.矩形与菱形的两组对边都分别平行,故选项A不符合题意;矩形的对角线相等,菱形的对角线不一定相等,故选项B正确;矩形与菱形的对角线都互相平分,故选项C不符合题意;矩形与菱形的两组对角都分别相等,故选项D不符合题意. 3.【解析】选C.
=2
,
×=
=
=2
,
与
不能合并,
÷
=
=
=15,因此只有选项C正确.
4.【解析】选A.一次函数的解析式为y=kx+b(k≠0), ∵x=-2时y=3;x=1时y=0, ∴
解得
∴一次函数的解析式为y=-x+1,∴当x=0时,y=1,即p=1.
5.【解析】选A.这10个数据中出现次数最多的数据是2400,一共出现了4次,所以众数是2400;这
5
2016年八年级数学(下)期末调研检测试卷
一、选择题(本题共10小题,满分共30分) 1.二次根式
2
、12 、30 、x+2 、40x2、x2y2中,最简二次根
式有( )个。
A、1 个 B、2 个 C、3 个 D、4个 2.
x的取值范围为( ).
A、x≥2 B、x≠3 C、x≥2或x≠3 D、x≥2且x≠3
3.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )
A.7,24,25
111113,4,54,7,8
22 B.222 C.3,4, 5 D.
4、在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是( )
(A)AC=BD,AB∥CD,AB=CD (B)AD∥BC,∠A=∠C (C)AO=BO=CO=DO,AC⊥BD (D)AO=CO,BO=DO,AB=BC
5、如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交
AE于点F,则∠1=( )
A
F
D
1
B
E
A.40° B.50° C.60° D.80°
6、表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是( )
7.如图所示,函数y1x和y2时,x的取值范围是( )
14
x的图象相交于(-1,1),(2,2)两点.当y1y233
A.x<-1 B.—1<x<2 C.x>2 D. x<-1或x>2
2
8、 在方差公式S
221
x1xx2xxnxn
中,下列说法不正确的是
2
( )
A. n是样本的容量 B. xn是样本个体
C. x是样本平均数 D. S是样本方差
9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A)极差是47
(B)众数是42
(C)中位数是58
(D)每月阅读数量超过40的有4个月
10、如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为【 】
A
F
5A.
45C.
3
5B.
26D.
5【八年级下册武威数学期末试卷及答案】
EB
P【八年级下册武威数学期末试卷及答案】
二、填空题(本题共10小题,满分共30分)
11.48
-+-3-32= 3(31)
12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( )
1
13. 平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD= cm。
14.在直角三角形ABC中,∠C=90°,CD是AB边上的中线,∠A=30°,AC=5 ,则△ADC的周长为 _。
15、如图,平行四边形ABCD的两条对角线AC、BD相交于点O,AB= 5 ,AC=6,DB=8 则四边形ABCD是的周长为 。 D
A
16.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= . 17. 某一次函数的图象经过点(1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式______________________.
18.)某市2007年5月份某一周的日最高气温(单位:℃)分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值是_______
19.为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是 (选填“甲”或“乙)
三.解答题:
21. (7分)在△ABC中,∠C=30°,AC=4cm,AB=3cm,求BC的长.
23. (9分) 如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG. (1)求证:四边形DEGF是平行四边形;
(2)当点G是BC的中点时,求证:四边形DEGF是菱形.
24. (9分) 小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180 m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.
⑴小亮行走的总路程是____________㎝,他途中休息了________min. ⑵①当50≤x≤80时,求y与x的函数关系式;
②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?
(第22题)
.
25、(10分)如图,直线ykx6与x轴分别交于E、F.点E坐标为(-8,0),点A的坐标为(-6,0).
(1)求k的值;
(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P出三角形OPA的面积s与x的函数关系式,并写出自变量x的取值范围; (3)探究:当P运动到什么位置时,三角形OPA的面积为
27
,并说明理由. 8
1
2
3
4
5
上一篇:课时作业本七年级数学下答案
下一篇:苏教三年级上册语文第一单元测试题