【www.guakaob.com--考研】
It has long been known that the rate of oxidative metabolism (the process that uses oxygen to convert food into energy) in any animal has a profound effect on its living patterns. The high metabolic rate of small animals, for example, gives them sustained power and activity per unit of weight, but at the cost of requiring constant consumption of food and water. Very large animals, with their relatively low metabolic rates, can survive well on a sporadic food supply, but can gen- erate little metabolic energy per gram of body weight. If only oxidative metabolic rate is considered, there- fore, one might assume that smaller, more active, animals could prey on larger ones, at least if they attacked in groups. Perhaps they could if it were not for anaerobic glycolysis, the great equalizer.There are limitations, however, to this compensa- tion. The glycogen reserves of any animal are good, at most, for only about two minutes at maximum effort, after which only the normal oxidative metabolic source of energy remains. With the conclusion of a burst of activity, the lactic acid level is high in the