湖南怀化初二数学试卷2016

| 中考 |

【www.guakaob.com--中考】

湖南怀化初二数学试卷2016(一)
2016年湖南省怀化市中考数学试卷(word解析版)

2016年湖南省怀化市中考数学试卷(word解析版)

一、选择题:每小题4分,共40分

1.(﹣2)2的平方根是( )

A.2 B.﹣2 C.±2 D.

2.某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的( ) A.平均数 B.中位数 C.方差 D.众数

3.下列计算正确的是( )

A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2

C.(x+1)(x﹣1)=x2﹣1 D.(x﹣1)2=x2﹣1

4.一元二次方程x2﹣x﹣1=0的根的情况为( )

A.有两个不相等的实数根 B.有两个相等的实数根

C.只有一个实数根 D.没有实数根

5.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是( )

A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD

6.不等式3(x﹣1)≤5﹣x的非负整数解有( )

A.1个 B.2个 C.3个 D.4个

7.二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是( ) A.开口向上,顶点坐标为(﹣1,﹣4) B.开口向下,顶点坐标为(1,4) C.开口向上,顶点坐标为(1,4) D.开口向下,顶点坐标为(﹣1,﹣4) 8.等腰三角形的两边长分别为4cm和8cm,则它的周长为( ) A.16cm B.17cm C.20cm D.16cm或20cm

9.函数y=中,自变量x的取值范围是( )

A.x≥1 B.x>1 C.x≥1且x≠2 D.x≠2

10.在Rt△ABC中,∠C=90°,sinA=,AC=6cm,则BC的长度为( ) A.6cm B.7cm C.8cm D.9cm

二、填空题:本大题共4小题,每小题4分,共16分

11.已知扇形的半径为6cm,面积为10πcm2,则该扇形的弧长等于 .

12.旋转不改变图形的.

13.已知点P(3,﹣2)在反比例函数y=(k≠0)的图象上,则k=在第四象限,函数值y随x的增大而 .

14.一个不透明的袋子,装了除颜色不同,其他没有任何区别的红色球3个,绿色球4个,黑色球7个,黄色球2个,从袋子中随机摸出一个球,摸到黑色球的概率是 .

三、解答题:本大题共8小题,每小题8分,共64分

15.计算:20160+2|1﹣sin30°|﹣()﹣1+.

16.有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中各有几只鸡和兔?

17.如图,已知AD=BC,AC=BD.

(1)求证:△ADB≌△BCA;

(2)OA与OB相等吗?若相等,请说明理由.

18.已知一次函数y=2x+4

(1)在如图所示的平面直角坐标系中,画出函数的图象;

(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;

(3)在(2)的条件下,求出△AOB的面积;

(4)利用图象直接写出:当y<0时,x的取值范围.

19.如图,在Rt△ABC中,∠BAC=90°

(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)

(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.

20.甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.

(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果; (2)求出现平局的概率.

21.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm. (1)求证:△AEH∽△ABC;

(2)求这个正方形的边长与面积.

22.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣3,0)、B(5,0)、C(0,5)三点,O为坐标原点

(1)求此抛物线的解析式;

(2)若把抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;

(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.

2016年湖南省怀化市中考数学试卷

参考答案与试题解析

一、选择题:每小题4分,共40分

1.(﹣2)2的平方根是( )

A.2 B.﹣2 C.±2 D.

【考点】平方根.

【分析】直接利用有理数的乘方化简,进而利用平方根的定义得出答案.

【解答】解:∵(﹣2)2=4,

∴4的平方根是:±2.

故选:C.

2.某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的( )

A.平均数 B.中位数 C.方差 D.众数

【考点】统计量的选择.

【分析】由于比赛取前19名参加决赛,共有39名选手参加,根据中位数的意义分析即可.

【解答】解:39个不同的成绩按从小到大排序后,中位数及中位数之后的共有19个数,

故只要知道自己的成绩和中位数就可以知道是否获奖了.

故选B.

3.下列计算正确的是( )

A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2

C.(x+1)(x﹣1)=x2﹣1 D.(x﹣1)2=x2﹣1

【考点】平方差公式;完全平方公式.

【分析】直接利用完全平方公式以及平方差公式分别计算得出答案.

【解答】解:A、(x+y)2=x2+y2+2xy,故此选项错误;

B、(x﹣y)2=x2﹣2xy+y2,故此选项错误;

C、(x+1)(x﹣1)=x2﹣1,正确;

D、(x﹣1)2=x2﹣2x+1,故此选项错误;

故选:C.

4.一元二次方程x2﹣x﹣1=0的根的情况为( )

A.有两个不相等的实数根 B.有两个相等的实数根

C.只有一个实数根 D.没有实数根

【考点】根的判别式.

【分析】先求出△的值,再判断出其符号即可.

【解答】解:∵a=1,b=﹣1,c=﹣1,

∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,

∴方程有两个不相等的实数根,

故选:A.

5.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是( )

A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD

【考点】角平分线的性质.

【分析】先根据角平分线的性质得出PC=PD,再利用HL证明△OCP≌△ODP,根据全等三角形的性质得出∠CPO=∠DPO,OC=OD.

【解答】解:∵OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,

∴PC=PD,故A正确;

在Rt△OCP与Rt△ODP中,

∴△OCP≌△ODP,

∴∠CPO=∠DPO,OC=OD,故C、D正确.

不能得出∠CPD=∠DOP,故B错误.

【湖南怀化初二数学试卷2016】

故选B.

6.不等式3(x﹣1)≤5﹣x的非负整数解有( )

A.1个 B.2个 C.3个 D.4个

【考点】一元一次不等式的整数解.

【分析】根据解不等式得基本步骤依次去括号、移项、合并同类项求得不等式的解集,在解集内找到非负整数即可.

【解答】解:去括号,得:3x﹣3≤5﹣x,

移项、合并,得:4x≤8,

系数化为1,得:x≤2,

∴不等式的非负整数解有0、1、2这3个,

故选:C.

7.二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是( )

A.开口向上,顶点坐标为(﹣1,﹣4) B.开口向下,顶点坐标为(1,4) C.开口向上,顶点坐标为(1,4) D.开口向下,顶点坐标为(﹣1,﹣4)

【考点】二次函数的性质.

【分析】根据a>0确定出二次函数开口向上,再将函数解析式整理成顶点式形式,然后写出顶点坐标.

【解答】解:∵二次函数y=x2+2x﹣3的二次项系数为a=1>0,

湖南怀化初二数学试卷2016(二)
2016年湖南省怀化市中考数学试卷

2016年湖南省怀化市中考数学试卷

一、选择题:每小题4分,共40分

1.(﹣2)2的平方根是( )

A.2 B.﹣2 C.±2 D.

2.某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的( )

A.平均数 B.中位数 C.方差 D.众数

3.下列计算正确的是( )

A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2

C.(x+1)(x﹣1)=x2﹣1 D.(x﹣1)2=x2﹣1

4.一元二次方程x2﹣x﹣1=0的根的情况为( )

A.有两个不相等的实数根 B.有两个相等的实数根

C.只有一个实数根 D.没有实数根

5.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是( )

A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD

6.不等式3(x﹣1)≤5﹣x的非负整数解有( )

A.1个 B.2个 C.3个 D.4个

7.二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是( )

A.开口向上,顶点坐标为(﹣1,﹣4) B.开口向下,顶点坐标为(1,4)

C.开口向上,顶点坐标为(1,4) D.开口向下,顶点坐标为(﹣1,﹣4)

8.等腰三角形的两边长分别为4cm和8cm,则它的周长为( )

A.16cm B.17cm C.20cm D.16cm或20cm

9.函数y=中,自变量x的取值范围是( )

A.x≥1 B.x>1 C.x≥1且x≠2 D.x≠2

10.在Rt△ABC中,∠C=90°,sinA=,AC=6cm,则BC的长度为( )

A.6cm B.7cm C.8cm D.

9cm

二、填空题:本大题共4小题,每小题4分,共16分

11.已知扇形的半径为6cm,面积为10πcm2,则该扇形的弧长等于 .

12.旋转不改变图形的 和 .

13.已知点P(3,﹣2)在反比例函数y=(k≠0)的图象上,则k=

;在第四象限,函数值y随x的增大而 .

14.一个不透明的袋子,装了除颜色不同,其他没有任何区别的红色球3个,绿色球4个,黑色球7个,黄色球2个,从袋子中随机摸出一个球,摸到黑色球的概率是 .

三、解答题:本大题共8小题,每小题8分,共64分

15.计算:20160+2|1﹣sin30°|﹣()﹣1+.

16.有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中各有几只鸡和兔?

17.如图,已知AD=BC,AC=BD.

(1)求证:△ADB≌△BCA;

(2)OA与OB相等吗?若相等,请说明理由.

18.已知一次函数y=2x+4

(1)在如图所示的平面直角坐标系中,画出函数的图象;

(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;

(3)在(2)的条件下,求出△AOB的面积;

(4)利用图象直接写出:当y<0时,x的取值范围.

19.如图,在Rt△ABC中,∠BAC=90°

(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)

(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.【湖南怀化初二数学试卷2016】

20.甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.

(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;

(2)求出现平局的概率.

【湖南怀化初二数学试卷2016】

21.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.

(1)求证:△AEH∽△ABC;

(2)求这个正方形的边长与面积.

22.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣3,0)、B(5,0)、C(0,5)三点,O为坐标原点

(1)求此抛物线的解析式;

(2)若把抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;

(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.

·

湖南怀化初二数学试卷2016(三)
2016年湖南省怀化市中考数学试卷

2016年湖南省怀化市中考数学试卷

一、选择题:每小题4分,共40分

21.(4分)(2016•怀化)(﹣2)的平方根是( )

A.2 B.﹣2 C.±2 D

2.(4分)(2016•怀化)某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的( )

A.平均数 B.中位数 C.方差 D.众数

3.(4分)(2016•怀化)下列计算正确的是( )

222222A.(x+y)=x+yB.(x﹣y)=x﹣2xy﹣y

222C.(x+1)(x﹣1)=x﹣1 D.(x﹣1)=x﹣1

24.(4分)(2016•怀化)一元二次方程x﹣x﹣1=0的根的情况为( )

A.有两个不相等的实数根 B.有两个相等的实数根

C.只有一个实数根 D.没有实数根

5.(4分)(2016•怀化)如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是( )

A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD

6.(4分)(2016•怀化)不等式3(x﹣1)≤5﹣x的非负整数解有( )

A.1个 B.2个 C.3个 D.4个

27.(4分)(2016•怀化)二次函数y=x+2x﹣3的开口方向、顶点坐标分别是

( )

A.开口向上,顶点坐标为(﹣1,﹣4) B.开口向下,顶点坐标为(1,4)

C.开口向上,顶点坐标为(1,4) D.开口向下,顶点坐标为(﹣1,﹣4)

8.(4分)(2016•怀化)等腰三角形的两边长分别为4cm和8cm,则它的周长为( )

A.16cm B.17cm C.20cm D.16cm或20cm

9.(4分)(2016•怀化)函数

y=中,自变量x的取值范围是( )

A.x≥1 B.x>1 C.x≥1且x≠2 D.x≠2

10.(4分)(2016•怀化)在Rt△ABC中,∠C=90°,

sinA=

BC的长度为( )

A.6cm B.7cm C.8cm D.9cm

,AC=6cm,则

二、填空题:本大题共4小题,每小题4分,共16分

211.(4分)(2016•怀化)已知扇形的半径为6cm,面积为10πcm,则该扇形

的弧长等于 .

12.(4分)(2016•怀化)旋转不改变图形的和.

13.(4分)(2016•怀化)已知点P(3,﹣2)在反比例函数y=(k≠0)的图象上,则k= ;在第四象限,函数值y随x的增大而 .

14.(4分)(2016•怀化)一个不透明的袋子,装了除颜色不同,其他没有任何区别的红色球3个,绿色球4个,黑色球7个,黄色球2个,从袋子中随机摸出一个球,摸到黑色球的概率是 .

三、解答题:本大题共8小题,每小题8分,共64分

15.(8分)(2016•怀化)计算:2016+2|1﹣sin30°|﹣

(0)﹣1

+.

16.(8分)(2016•怀化)有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中各有几只鸡和兔?

【湖南怀化初二数学试卷2016】

17.(8分)(2016•怀化)如图,已知AD=BC,AC=BD.

(1)求证:△ADB≌△BCA;

(2)OA与OB相等吗?若相等,请说明理由.

18.(8分)(2016•怀化)已知一次函数y=2x+4

(1)在如图所示的平面直角坐标系中,画出函数的图象;

(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;

(3)在(2)的条件下,求出△AOB的面积;

(4)利用图象直接写出:当y<0时,x的取值范围.

19.(8分)(2016•怀化)如图,在Rt△ABC中,∠BAC=90°

(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)

(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.

20.(8分)(2016•怀化)甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.

(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;

(2)求出现平局的概率.

21.(8分)(2016•怀化)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.

(1)求证:△AEH∽△ABC;

(2)求这个正方形的边长与面积.

222.(8分)(2016•怀化)如图,已知抛物线y=ax+bx+c(a≠0)经过A(﹣3,

0)、B(5,0)、C(0,5)三点,O为坐标原点

(1)求此抛物线的解析式;

(2)若把抛物线y=ax+bx+c(a≠0)向下平

移2个单位长度,再向右平移n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;

(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.

2016年湖南省怀化市中考数学试卷

参考答案与试题解析

一、选择题:每小题4分,共40分

21.(4分)(2016•怀化)(﹣2)的平方根是( )

A.2 B.﹣2 C.±2 D

【考点】平方根.

【分析】直接利用有理数的乘方化简,进而利用平方根的定义得出答案.

2【解答】解:∵(﹣2)=4,

∴4的平方根是:±2.

故选:C.

【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.

2.(4分)(2016•怀化)某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的( )

A.平均数 B.中位数 C.方差 D.众数

【考点】统计量的选择.

【分析】由于比赛取前19名参加决赛,共有39名选手参加,根据中位数的意义分析即可.

【解答】解:39个不同的成绩按从小到大排序后,中位数及中位数之后的共有19个数,

故只要知道自己的成绩和中位数就可以知道是否获奖了.

故选B.

【点评】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.

3.(4分)(2016•怀化)下列计算正确的是( )

A.(x+y)=x+yB.(x﹣y)=x﹣2xy﹣y

222C.(x+1)(x﹣1)=x﹣1 D.(x﹣1)=x﹣1

【考点】平方差公式;完全平方公式.

【分析】直接利用完全平方公式以及平方差公式分别计算得出答案.

222【解答】解:A、(x+y)=x+y+2xy,故此选项错误;

222B、(x﹣y)=x﹣2xy+y,故此选项错误;

2C、(x+1)(x﹣1)=x﹣1,正确;

22D、(x﹣1)=x﹣2x+1,故此选项错误;

故选:C.

【点评】此题主要考查了完全平方公式以及平方差公式,正确应用乘法公式是解题关键.

222222

4.(4分)(2016•怀化)一元二次方程x﹣x﹣1=0的根的情况为( )

A.有两个不相等的实数根 B.有两个相等的实数根

2

C.只有一个实数根 D.没有实数根

【考点】根的判别式.

【分析】先求出△的值,再判断出其符号即可.

【解答】解:∵a=1,b=﹣1,c=﹣1,

22∴△=b﹣4ac=(﹣1)﹣4×1×(﹣1)=5>0,

∴方程有两个不相等的实数根,

故选:A.

【点评】本题考查的是根的判别式,熟知一元二次方程ax+bx+c=0(a≠0)的根与△的关系是解答此题的关键.

5.(4分)(2016•怀化)如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是( )

2

A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD

【考点】角平分线的性质.

【分析】先根据角平分线的性质得出PC=PD,再利用HL证明△OCP≌△ODP,根据全等三角形的性质得出∠CPO=∠DPO,OC=OD.

【解答】解:∵OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,

∴PC=PD,故A正确;

在Rt△OCP与Rt△ODP中,

∴△OCP≌△ODP,

∴∠CPO=∠DPO,OC=OD,故C、D正确.

不能得出∠CPD=∠DOP,故B错误.

故选B.

【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了全等三角形的判定与性质,得出PC=PD是解题的关键.

6.(4分)(2016•怀化)不等式3(x﹣1)≤5﹣x的非负整数解有( )

A.1个 B.2个 C.3个 D.4个

【考点】一元一次不等式的整数解.

【分析】根据解不等式得基本步骤依次去括号、移项、合并同类项求得不等式的解集,在解集内找到非负整数即可.

【解答】解:去括号,得:3x﹣3≤5﹣x,

移项、合并,得:4x≤8,

系数化为1,得:x≤2,

∴不等式的非负整数解有0、1、2这3个,

湖南怀化初二数学试卷2016(四)
2016年湖南省怀化市中考数学试卷

2016年湖南省怀化市中考数学试卷

一、选择题:每小题4分,共40分

21.(4分)(2016•怀化)(﹣2)的平方根是( )

A.2B.﹣2C.±2D.

2.(4分)(2016•怀化)某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的( )

A.平均数B.中位数C.方差D.众数

3.(4分)(2016•怀化)下列计算正确的是( )

A.(x+y)=x+yB.(x﹣y)=x﹣2xy﹣y

222C.(x+1)(x﹣1)=x﹣1D.(x﹣1)=x﹣1

24.(4分)(2016•怀化)一元二次方程x﹣x﹣1=0的根的情况为( )

A.有两个不相等的实数根B.有两个相等的实数根

C.只有一个实数根D.没有实数根

5.(4分)(2016•怀化)如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是

C、D,则下列结论错误的是( )

222222

A.PC=PDB.∠CPD=∠DOPC.∠CPO=∠DPOD.OC=OD

6.(4分)(2016•怀化)不等式3(x﹣1)≤5﹣x的非负整数解有( )

A.1个B.2个C.3个D.4个

27.(4分)(2016•怀化)二次函数y=x+2x﹣3的开口方向、顶点坐标分别是( )

A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(1,4)

C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(﹣1,﹣4)

8.(4分)(2016•怀化)等腰三角形的两边长分别为4cm和8cm,则它的周长为( )

A.16cmB.17cmC.20cmD.16cm或20cm

9.(4分)(2016•怀化)函数y=

A.x≥1B.x>1C.x≥1且x≠2D.x≠2

10.(4分)(2016•怀化)在Rt△ABC中,∠C=90°,sinA=,AC=6cm,则BC的长度为( )

A.6cmB.7cmC.8cmD.9cm

二、填空题:本大题共4小题,每小题4分,共16分 中,自变量x的取值范围是( )

11.(4分)(2016•怀化)已知扇形的半径为6cm,面积为10πcm,则该扇形的弧长等于 .

12.(4分)(2016•怀化)旋转不改变图形的.

13.(4分)(2016•怀化)已知点P(3,﹣2)在反比例函数y=(k≠0)的图象上,则k= ;在第四象限,函数值y随x的增大而 .

14.(4分)(2016•怀化)一个不透明的袋子,装了除颜色不同,其他没有任何区别的红色球3个,绿色球4个,黑色球7个,黄色球2个,从袋子中随机摸出一个球,摸到黑色球的概率是 .

三、解答题:本大题共8小题,每小题8分,共64分

15.(8分)(2016•怀化)计算:2016+2|1﹣sin30°|﹣()+0﹣12.

16.(8分)(2016•怀化)有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中各有几只鸡和兔?

17.(8分)(2016•怀化)如图,已知AD=BC,AC=BD.

(1)求证:△ADB≌△BCA;

(2)OA与OB相等吗?若相等,请说明理由.

18.(8分)(2016•怀化)已知一次函数y=2x+4

(1)在如图所示的平面直角坐标系中,画出函数的图象;

(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;

(3)在(2)的条件下,求出△AOB的面积;

(4)利用图象直接写出:当y<0时,x的取值范围.

19.(8分)(2016•怀化)如图,在Rt△ABC中,∠BAC=90°

(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)

(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.

20.(8分)(2016•怀化)甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.

(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;

(2)求出现平局的概率.

21.(8分)(2016•怀化)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.

(1)求证:△AEH∽△ABC;

(2)求这个正方形的边长与面积.

222.(8分)(2016•怀化)如图,已知抛物线y=ax+bx+c(a≠0)经过A(﹣3,0)、B(5,0)、

C(0,5)三点,O为坐标原点

(1)求此抛物线的解析式;

(2)若把抛物线y=ax+bx+c(a≠0)向下平移2个单位长度,再向右平移n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;

(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.

2016年湖南省怀化市中考数学试卷

参考答案与试题解析

一、选择题:每小题4分,共40分

21.(4分)(2016•怀化)(﹣2)的平方根是( )

A.2B.﹣2C.±2D.

【分析】直接利用有理数的乘方化简,进而利用平方根的定义得出答案.

2【解答】解:∵(﹣2)=4,

∴4的平方根是:±2.

故选:C.

【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.

2.(4分)(2016•怀化)某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的( )

A.平均数B.中位数C.方差D.众数

【分析】由于比赛取前19名参加决赛,共有39名选手参加,根据中位数的意义分析即可.

【解答】解:39个不同的成绩按从小到大排序后,中位数及中位数之后的共有19个数, 故只要知道自己的成绩和中位数就可以知道是否获奖了.

故选B.

【点评】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.

3.(4分)(2016•怀化)下列计算正确的是( )

A.(x+y)=x+yB.(x﹣y)=x﹣2xy﹣y

222C.(x+1)(x﹣1)=x﹣1D.(x﹣1)=x﹣1

【分析】直接利用完全平方公式以及平方差公式分别计算得出答案.

222【解答】解:A、(x+y)=x+y+2xy,故此选项错误;

222B、(x﹣y)=x﹣2xy+y,故此选项错误;

2C、(x+1)(x﹣1)=x﹣1,正确;

22D、(x﹣1)=x﹣2x+1,故此选项错误;

故选:C.

【点评】此题主要考查了完全平方公式以及平方差公式,正确应用乘法公式是解题关键.

4.(4分)(2016•怀化)一元二次方程x﹣x﹣1=0的根的情况为( )

A.有两个不相等的实数根B.有两个相等的实数根

C.只有一个实数根D.没有实数根

【分析】先求出△的值,再判断出其符号即可.

【解答】解:∵a=1,b=﹣1,c=﹣1,

22∴△=b﹣4ac=(﹣1)﹣4×1×(﹣1)=5>0,

∴方程有两个不相等的实数根,

故选:A.

【点评】本题考查的是根的判别式,熟知一元二次方程ax+bx+c=0(a≠0)的根与△的关系是解答此题的关键.

22222222

5.(4分)(2016•怀化)如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是

C、D,则下列结论错误的是( )

A.PC=PDB.∠CPD=∠DOPC.∠CPO=∠DPOD.OC=OD

【分析】先根据角平分线的性质得出PC=PD,再利用HL证明△OCP≌△ODP,根据全等三角形的性质得出∠CPO=∠DPO,OC=OD.

【解答】解:∵OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D, ∴PC=PD,故A正确;

在Rt△OCP与Rt△ODP中,

∴△OCP≌△ODP,

∴∠CPO=∠DPO,OC=OD,故C、D正确.

不能得出∠CPD=∠DOP,故B错误.

故选B.

【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了全等三角形的判定与性质,得出PC=PD是解题的关键.

6.(4分)(2016•怀化)不等式3(x﹣1)≤5﹣x的非负整数解有( )

A.1个B.2个C.3个D.4个

【分析】根据解不等式得基本步骤依次去括号、移项、合并同类项求得不等式的解集,在解集内找到非负整数即可.

【解答】解:去括号,得:3x﹣3≤5﹣x,

移项、合并,得:4x≤8,

系数化为1,得:x≤2,

∴不等式的非负整数解有0、1、2这3个,

故选:C.

【点评】本题主要考查解不等式得基本技能和不等式的整数解,求出不等式的解集是解题的关键.

7.(4分)(2016•怀化)二次函数y=x+2x﹣3的开口方向、顶点坐标分别是( )

A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(1,4)

C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(﹣1,﹣4)

【分析】根据a>0确定出二次函数开口向上,再将函数解析式整理成顶点式形式,然后写出顶点坐标.

2【解答】解:∵二次函数y=x+2x﹣3的二次项系数为a=1>0,

∴函数图象开口向上,

22∵y=x+2x﹣3=(x+1)﹣4,

2

湖南怀化初二数学试卷2016(五)
湖南省怀化市2016年中考数学试卷及答案解析(word版)

2016年湖南省怀化市中考数学试卷

一、选择题:每小题4分,共40分

1.(﹣2)2的平方根是( )

A.2 B.﹣2 C.±2 D.

2.某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的( )

A.平均数 B.中位数 C.方差 D.众数

3.下列计算正确的是( )【湖南怀化初二数学试卷2016】

A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2

C.(x+1)(x﹣1)=x2﹣1 D.(x﹣1)2=x2﹣1

4.一元二次方程x2﹣x﹣1=0的根的情况为( )

A.有两个不相等的实数根 B.有两个相等的实数根

C.只有一个实数根 D.没有实数根

5.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是( )

A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD

6.不等式3(x﹣1)≤5﹣x的非负整数解有( )

A.1个 B.2个 C.3个 D.4个

7.二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是( )

A.开口向上,顶点坐标为(﹣1,﹣4) B.开口向下,顶点坐标为(1,4) C.开口向上,顶点坐标为(1,4) D.开口向下,顶点坐标为(﹣1,﹣4) 8.等腰三角形的两边长分别为4cm和8cm,则它的周长为( ) A.16cm B.17cm C.20cm D.16cm或20cm

9.函数y=中,自变量x的取值范围是( )

A.x≥1 B.x>1 C.x≥1且x≠2 D.x≠2

10.在Rt△ABC中,∠C=90°,sinA=,AC=6cm,则BC的长度为( ) A.6cm B.7cm C.8cm D.9cm

二、填空题:本大题共4小题,每小题4分,共16分

11.已知扇形的半径为6cm,面积为10πcm2,则该扇形的弧长等

于 .【湖南怀化初二数学试卷2016】

12.旋转不改变图形的 和 .

13.已知点P(3,﹣2)在反比例函数y=(k≠0)的图象上,则k= ;在第四象限,函数值y随x的增大而 .

14.一个不透明的袋子,装了除颜色不同,其他没有任何区别的红色球3个,绿色球4个,黑色球7个,黄色球2个,从袋子中随机摸出一个球,摸到黑色球的概率是 .

三、解答题:本大题共8小题,每小题8分,共64分

15.计算:20160+2|1﹣sin30°|﹣()﹣1+.

16.有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中各有几只鸡和兔?

17.如图,已知AD=BC,AC=BD.

(1)求证:△ADB≌△BCA;

(2)OA与OB相等吗?若相等,请说明理由.

18.已知一次函数y=2x+4

(1)在如图所示的平面直角坐标系中,画出函数的图象;

(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;

(3)在(2)的条件下,求出△AOB的面积;

(4)利用图象直接写出:当y<0时,x的取值范围.

19.如图,在Rt△ABC中,∠BAC=90°

(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)

(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.

20.甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.

(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果; (2)求出现平局的概率.

21.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm. (1)求证:△AEH∽△ABC;

(2)求这个正方形的边长与面积.

22.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣3,0)、B(5,0)、C(0,5)三点,O为坐标原点

(1)求此抛物线的解析式;

(2)若把抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;

(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.

2016年湖南省怀化市中考数学试卷

参考答案与试题解析

一、选择题:每小题4分,共40分

1.(﹣2)2的平方根是( )

A.2 B.﹣2 C.±2 D.

【考点】平方根.

【分析】直接利用有理数的乘方化简,进而利用平方根的定义得出答案.

【解答】解:∵(﹣2)2=4,

∴4的平方根是:±2.

故选:C.

2.某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的( )

A.平均数 B.中位数 C.方差 D.众数

【考点】统计量的选择.

【分析】由于比赛取前19名参加决赛,共有39名选手参加,根据中位数的意义分析即可.

【解答】解:39个不同的成绩按从小到大排序后,中位数及中位数之后的共有19个数,

故只要知道自己的成绩和中位数就可以知道是否获奖了.

故选B.

3.下列计算正确的是( )

A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2

C.(x+1)(x﹣1)=x2﹣1 D.(x﹣1)2=x2﹣1

【考点】平方差公式;完全平方公式.

【分析】直接利用完全平方公式以及平方差公式分别计算得出答案.

【解答】解:A、(x+y)2=x2+y2+2xy,故此选项错误;

B、(x﹣y)2=x2﹣2xy+y2,故此选项错误;

C、(x+1)(x﹣1)=x2﹣1,正确;

D、(x﹣1)2=x2﹣2x+1,故此选项错误;

故选:C.

4.一元二次方程x2﹣x﹣1=0的根的情况为( )

A.有两个不相等的实数根 B.有两个相等的实数根

C.只有一个实数根 D.没有实数根

【考点】根的判别式.

【分析】先求出△的值,再判断出其符号即可.

【解答】解:∵a=1,b=﹣1,c=﹣1,

∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,

∴方程有两个不相等的实数根,

故选:A.

5.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是( )

A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD

【考点】角平分线的性质.

【分析】先根据角平分线的性质得出PC=PD,再利用HL证明△OCP≌△ODP,根据全等三角形的性质得出∠CPO=∠DPO,OC=OD.

【解答】解:∵OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,

∴PC=PD,故A正确;

在Rt△OCP与Rt△ODP中,

∴△OCP≌△ODP,

∴∠CPO=∠DPO,OC=OD,故C、D正确.

不能得出∠CPD=∠DOP,故B错误.

故选B.

6.不等式3(x﹣1)≤5﹣x的非负整数解有( )

A.1个 B.2个 C.3个 D.4个

【考点】一元一次不等式的整数解.

【分析】根据解不等式得基本步骤依次去括号、移项、合并同类项求得不等式的解集,在解集内找到非负整数即可.

【解答】解:去括号,得:3x﹣3≤5﹣x,

移项、合并,得:4x≤8,

系数化为1,得:x≤2,

∴不等式的非负整数解有0、1、2这3个,

故选:C.

7.二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是( )

A.开口向上,顶点坐标为(﹣1,﹣4) B.开口向下,顶点坐标为(1,4) C.开口向上,顶点坐标为(1,4) D.开口向下,顶点坐标为(﹣1,﹣4)

【考点】二次函数的性质.

【分析】根据a>0确定出二次函数开口向上,再将函数解析式整理成顶点式形式,然后写出顶点坐标.

【解答】解:∵二次函数y=x2+2x﹣3的二次项系数为a=1>0,

本文来源:http://www.guakaob.com/xuelileikaoshi/648782.html