【www.guakaob.com--汉语四六级】
2015全国卷文科数学篇一:2015年全国卷1文科数学
绝密★启封并使用完毕前
2015年普通高等学校招生全国统一考试
文科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。 3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n N},B={6,8,12,14},则集合A B中元素的个数为 (A)5 (B)4 (C)3 (D)2 (2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=
(A)(-7,-4) (B)(7,4) (C)(-1,4) (D)(1,4) (3)已知复数z满足(z-1)i=i+1,则z=
(A)-2-I (B)-2+I (C)2-I (D)2+i
(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾
股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为
10111
(A) (B) (C) (D)
351020
1
(5)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y²=8x
2
的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12
(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有
A.14斛 B.22斛 C.36斛 D.66斛
是公差为1的等差数列,
则=4,
=
(7)已知
(A) (B
) (C)10 (D)12 (8)函数
f(x)=
的部分图像如图所示,则f(x)的单调递减区间为
(A)(k
-, k-
, 2k
-),k-),k
(A)(2k
(A)(k
-, k-),k
(A)(2k-
, 2k-),k
(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=
(A)5 (B)6 (C)7 (D)8 (10)已知函数(A)-,且f(a)=-3,则f(6-a)=
7531 (B)- (C)- (D)- 4444
(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则
r=
(A)1 (B) 2 (C) 4 (D) 8
(12)设函数y=f(x)的图像关于直线y=-x对称,且f(-2)+f(-4)=1, 则a=
(A)-1 (B)1 (C)2 (D)4
第Ⅱ卷
二.填空题:本大题共4小题,每小题5分
(13)在数列{an}中, a1=2,an+1=2an, Sn为{an}的前n项和。若-Sn=126,则n=. (14)已知函数f(x)=ax3+x+1的图像在点(1,f(1))处的切线过点(2,7),则(15)x,y满足约束条件
2
,则z=3x+y的最大值为.
y2(16)已知F是双曲线C:x-=1的右焦点,P是C的左支上一点,A(0,66).8
当△APF周长最小是,该三角形的面积为
三.解答题:解答应写出文字说明,证明过程或演算步骤
(17)(本小题满分12分)
已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sinAsinC (Ⅰ)若a=b,求cosB;
(Ⅱ)设B=90°,且a=2,求△ABC的面积
(18)(本小题满分12分)
如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD. (Ⅰ)证明:平面AEC⊥平面BED;
(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥—ACD的体积为
6
,求该三棱锥的侧面3
积 (19)(本小题满分12分)
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
1
表中w1 ,w =
8
w1
i1
8
(1) 根据散点图判断,y=a+bx与y关于年宣传费x的回
归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y-x。根据(Ⅱ)的结果回答下列问题:
(i) 年宣传费x=49时,年销售量及年利润的预报值是多少? (ii) 年宣传费x为何值时,年利率的预报值最大? 附:对于一组数据(u1 v1),(u2 v2)„„.. (un vn),其回归线v=u的斜率和截距的最小二乘估计分别为:
(20)(本小题满分12分)
已知过点A(0,1)且斜率为k的直线l与圆C(x-2)2+(y-3)2=1交于M,N两点. (1) 求K的取值范围;
2015全国卷文科数学篇二:2015全国卷1数学试卷及答案(文科)
绝密★启封并使用完毕前
2015年普通高等学校招生全国统一考试
文科数学(全国卷Ⅰ)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页,第Ⅱ卷3至6页。
第Ⅰ卷
一. 选择题:本大题共12小题,每小题5分。
1、已知集合A{xx3n2,nN},B{6,8,10,12,14},则集合A (A) 5 (B)4 (C)3 (D)2
2、已知点A(0,1),B(3,2),向量AC(4,3),则向量BC
(A) (7,4) (B)(7,4) (C)(1,4) (D)(1,4)
3、已知复数z满足(z1)i1i,则z( )
(A) 2i (B)2i (C)2i (D)2i B中的元素个数为
4、如果3个正数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
(A) 3111 (B) (C) (D) 5101020
12,E的右焦点与抛物线C:y8x的焦点重合,A,B25、已知椭圆E的中心为坐标原点,离心率为
是C的准线与E的两个交点,则AB
(A) 3 (B)6 (C)9 (D)12
6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有
委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙
角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米
堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62
立方尺,圆周率约为3,估算出堆放的米有( )
(A)14斛 (B)22斛 (C)36斛 (D)66斛
7、已知{an}是公差为1的等差数列,Sn为{an}的前n项和,若S84S4,则a10( )
(A) 1719 (B) (C)10 (D)12 22
8、函数f(x)cos(x)的部分图像如图所示,则f(x)的单调递减区间为( )
(A)(k1313,k),kZ (B)(2k,2k),k
Z 4444
(C)(k1313,k),kZ (D)(2k,2k),kZ 4444
9、执行右面的程序框图,如果输入的t0.01,则输出的n( )
(A) 5 (B)6 (C)10 (D)12
2x12,x110、已知函数f(x) ,且f(a)3,则f(6a)
log2(x1),x1
(A)4531 (B) (C) (D) 7444
11、圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620,则r( )
(A)1 (B)2 (C)4 (D)8
xa12、设函数yf(x)的图像与y2的图像关于直线yx对称,且f(2)f(4)1,
则a( )
(A) 1 (B)1 (C)2 (D)4
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分
13、数列an中a12,an12an,Sn为an的前n项和,若Sn126,则n.
14.已知函数fxaxx1的图像在点1,f1的处的切线过点2,7,则 a3
xy2015. 若x,y满足约束条件x2y10 ,则z=3x+y的最大值为.
2xy20
y2
1的右焦点,P是C
左支上一点,A ,当APF周长最小16.已知P是双曲线C:x82时,该三角形的面积为 .
三、解答题
17. (本小题满分12分)已知a,b,c分别是ABC内角A,B,C的对边,sinB2sinAsinC. (I)若ab,求cosB;
(II)若B
90,且a 求ABC的面积.
18. (本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,BE平面ABCD, (I)证明:平面AEC平面BED;
(II)若ABC120,AEEC, 三棱锥E
ACD的体积为
2. 3
19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费xi,和年销售量yii1,2,3,,8的数据作了初步处理,得到下面的散点图及一些统计量的值
.
(I)根据散点图判断,ya
bx与ycy关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(II)根据(I)的判断结果及表中数据,建立y关于x的回归方程;
(III)已知这种产品的年利润z与x,y的关系为z0.2yx ,根据(II)的结果回答下列问题: (i)当年宣传费x90时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1 v1),(u2 v2)…….. (un vn),其回归线v=u的斜率和截距的最小二乘估计分别为:
20(本小题满分12分)已知过点A1,0且斜率为k的直线l与圆C:x2y31交于M,22
N两点.
(I)求k的取值范围; (II)OMON12,其中O为坐标原点,求MN
.
21. (本小题满分12分)设函数fxe2xalnx.
2. a(I)讨论fx的导函数fx的零点的个数; (II)证明:当a0时fx2aaln
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号
22. (本小题满分10分)选修4-1:几何证明选讲
2015全国卷文科数学篇三:2015全国卷1文科数学试题(附答案)
绝密★启封并使用完毕前
2015年普通高等学校招生全国统一考试
文科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。 3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n N},B={6,8,12,14},则集合A B中元素的个数为 (A)5 (B)4 (C)3 (D)2 (2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=
(A)(-7,-4) (B)(7,4) (C)(-1,4) (D)(1,4) (3)已知复数z满足(z-1)i=i+1,则z=
(A)-2-I (B)-2+I (C)2-I (D)2+i
(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组
勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为
10111
(A) (B) (C) (D)
351020
1
(5)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y²=8x
2
的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12
(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有
A.14斛 B.22斛 C.36斛 D.66斛
是公差为1的等差数列,
则=4,
=
(7)已知
(A) (B
) (C)10 (D)12 (8)函数
f(x)=
的部分图像如图所示,则f(x)的单调递减区间为
(A)(k
-, k-
, 2k
-),k-),k
(A)(2k
(A)(k-, k-),k
(A)(2k-
, 2k-),k
(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=
(A)5 (B)6 (C)7 (D)8 (10)已知函数(A)-,且f(a)=-3,则f(6-a)=
7531 (B)- (C)- (D)- 4444
(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则
r=
(A)1 (B) 2 (C) 4 (D) 8
(12)设函数y=f(x)的图像关于直线y=-x对称,且f(-2)+f(-4)=1, 则a=
(A)-1 (B)1 (C)2 (D)4
2015年普通高等学校招生全国统一考试
文科数学 第Ⅱ卷
注意事项:
第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。若在试卷上作答,答案无效。
本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须作答。第22题~ 第24题为选考题,考生根据要求做答。
二.填空题:本大题共4小题,每小题5分
(13)在数列{an}中, a1=2,an+1=2an, Sn为{an}的前n项和。若-Sn=126,则n=. (14)已知函数f(x)=ax3+x+1的图像在点(1,f(1))处的切线过点(2,7),则(15)x,y满足约束条件
2
,则z=3x+y的最大值为.
y2
(16)已知F是双曲线C:x-=1的右焦点,P是C的左支上一点,A(0,66).
8
当△APF周长最小是,该三角形的面积为
三.解答题:解答应写出文字说明,证明过程或演算步骤
(17)(本小题满分12分)
已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sinAsinC (Ⅰ)若a=b,求cosB;
(Ⅱ)设B=90°,且a=2,求△ABC的面积
(18)(本小题满分12分)
如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD. (Ⅰ)证明:平面AEC⊥平面BED;
(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥—ACD的体积为
6
,求该三棱锥的侧3
面积 (19)(本小题满分12分)
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的
年宣传费和年销售量(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
1表中w1 ,w =
8
w1
i1
8
(1) 根据散点图判断,y=a+bx与y关于年宣传费x的
回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y-x。根据(Ⅱ)的结果回答下列问题:
(i) 年宣传费x=49时,年销售量及年利润的预报值是多少? (ii) 年宣传费x为何值时,年利率的预报值最大? 附:对于一组数据(u1 v1),(u2 v2)„„.. (un vn),其回归线v=u的斜率和截距的最小二乘估计分别为:
2015全国卷文科数学篇四:2015年全国卷1文科数学试题
2015年普通高等学校招生全国统一考试
文科数学 第Ⅰ卷
一、选择题:本大题共12小题,每小题5分。
(1)已知集合A{x|x3n2,nN},B{6,8,12,14},则集合AB中元素的个数为
(A)5
(B)4
(C)3
(D)2
(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=
(A)(-7,-4) (B)(7,4) (C)(-1,4) (D)(1,4) (3)已知复数z满足(z1)ii1,则z=
(A)-2-i (B)-2+i (C)2-i (D)2+i
(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾
股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为
10111
(A) (B) (C) (D)
351020
1
(5)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y²=8x
2
的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12 (6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有
第6题图 第11题图 A.14斛 B.22斛 C.36斛 D.66斛
(7)已知{an}错误!未找到引用源。是公差为1的等差数列,Sn为{an}的前n项和
错误!未找到引用源。则S84S4,a10
(A)错误!未找到引用源。 (B)错误!未找到引用源。 (C)10
(D)12
(8)函数f(x)cos(x)的部分图像如图所示,则f(x)的单调递减区间为
13
(k,k),kZ(A) 44
13
(2k,2k),kZ(B) 44
13
(k,k),kZ(C) 44
13
(2k,2k),kZ(D) 44
(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=
(A)5 (B)6 (C)7 (D)8
2x12,x1,f(x)
(10)已知函数,且f(a)3,则log2(x1),x1.错误!未找到引用源。
f(6a)
7531
(B)- (C)- (D)- 4444
(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r= (A)1 (B) 2 (C) 4 (D) 8
(A)-
(12)设函数y2xa的图像关于直线y=-x对称,且f(-2)+f(-4)=1,则a= (A)-1 (B)1 (C)2 (D)4
第Ⅱ卷
二.填空题:本大题共4小题,每小题5分
(13)在数列{an}中,a12,an12an,Sn为{an}的前n项和,若Sn126,则n(14)已知函数f(x)ax3x1的图像在点(1,f(1))处的切线过点(2,7),则
a
xy2
x2y10
(15)x,y满足约束条件2xy20,则z3xy的最大值为 .
y2
C:x1的右焦点,P是C的左支上一点,A(06).
(16)已知F是双曲线 8
2
当△APF周长最小时,该三角形的面积为 . 三.解答题:解答应写出文字说明,证明过程或演算步骤 (17)(本小题满分12分)
2
已知a,b,c分别为ABC内角A,B,C的对边,sinB2sinAsinC.
(Ⅰ)若ab,求cosB;
(Ⅱ)设B90,且a2,求ABC的面积.
(18)(本小题满分12分)
如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD. (1)证明:平面AEC⊥平面BED;
2若ABC120,AEEC,三棱锥EACD的体积为
6
,求该三棱锥的侧面积. 3
(19)(本小题满分12分)
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费错误!未找到引用源。和年销售量错误!未找到引用源。(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
1
表中w1 ,w =
8
w1
i1
8
(1) 根据散点图判断,y=a+bx与y关于年宣传费x的回
归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y-x。根据(Ⅱ)的结果回答下列问题:
(i) 年宣传费x=49时,年销售量及年利润的预报值是多少? (ii) 年宣传费x为何值时,年利率的预报值最大? 附:对于一组数据(u1 v1),(u2 v2)„„.. (un vn),其回归线v=u的斜率和截距的最小二乘估计分别为:
(20)(本小题满分12分)
已知过点A(0,1)且斜率为k的直线l与圆C:(x2)2(y3)21交于M,N两点. (1) 求K的取值范围;
(2) 若OM·ON =12,其中0为坐标原点,求︱MN︱.
(21).(本小题满分12分)
a
设函数f(x)e2x。
x
(Ⅰ)讨论f(x)的导函数f'(x)零点的个数;
2
(Ⅱ)证明:当a0时,f(x)2aaln。
a
请考生在第22、23、24题中任选一题作答,如果多做,则安所做的第一题计分。作答时请写清题号。 (22)(本小题满分10分)选修4-1:几何证明选讲 如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E。
(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;
(Ⅱ)若
,求∠ACB的大小。
2015全国卷文科数学篇五:2015年高考新课标全国卷1文科数学
2015年普通高等学校招生全国统一考试新课标全国卷1
文科数学
一、选择题:每小题5分,共60分
1、已知集合A{xx3n2,nN},B{6,8,10,12,14},则集合A (A) 5 (B)4 (C)3 (D)2
2、已知点A(0,1),B(3,2),向量AC(4,3),则向量BC
(A) (7,4) (B)(7,4) (C)(1,4) (D)(1,4)
3、已知复数z满足(z1)i1i,则z( )
(A) 2i (B)2i (C)2i (D)2i B中的元素个数为
4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
3111 (B) (C) (D) 1051020
15、已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线C:y28x的焦点重合,A,B2(A)
是C的准线与E的两个交点,则AB
(A) 3 (B)6 (C)9 (D)12
6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:
“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思
为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆
底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多
少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放
的米约有( )
(A)14斛 (B)22斛 (C)36斛 (D)66斛
7、已知{an}是公差为1的等差数列,Sn为{an}的前n项和,若S84S4,则a10( )
(A) 1719 (B) (C)10 (D)12 22
8、函数f(x)cos(x)的部分图像如图所示,则f(x)的单调递减区间为( )
(A)(k13
4,k4),kZ
(B)(2k1
4,2k3
4),kZ
(C)(k13
4,k4),kZ
(D)(2k1
4,2k3
4),kZ
9、执行右面的程序框图,如果输入的t0.01,则输出的n(
(A) 5 (B)6 (C)7 (D)8
10、已知函数f(x)2x12,x1
log ,
2(x1),x1
且f(a)3,则f(6a)
(A)7
4
)
5 4
3(C) 4
1(D) 4(B)
11、圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620,则r( )
(A)1
(B)2
(C)4
(D)8
12、设函数yf(x)的图像与y2xa的图像关于直线yx对称,且
f(2)f(4)1,则a( )
(A) 1 (B)1 (C)2 (D)4
二、填空题:本大题共4小题,每小题5分
13、数列an中a12,an12an,Sn为an的前n项和,若Sn126,则n.
14.已知函数fxaxx1的图像在点1,f1的处的切线过点2,7,则 3a.
xy2015. 若x,y满足约束条件x2y10 ,则z=3x+y的最大值为.
2xy20
y2
1的右焦点,P是C
左支上一点,A ,当APF周长最小16.已知F是双曲线C:x82时,该三角形的面积为 .
三、解答题
217. (本小题满分12分)已知a,b,c分别是ABC内角A,B,C的对边,sinB
2sinAsinC.
(I)若ab,求cosB;
(II)若B
90,且a 求ABC的面积.
18. (本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,BE平面ABCD,
(I)证明:平面AEC平面BED;
(II)若ABC120,AEEC, 三棱锥E
ACD. 19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费xi和年销售量yii1,2,,8数据作了初步处理,得到下面的散点图及一些统计量的值.
(I)根据散点图判断,ya
bx与ycy关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(II)根据(I)的判断结果及表中数据,建立y关于x的回归方程;
(III)已知这种产品的年利润z与x,y的关系为z0.2yx ,根据(II)的结果回答下列问题:
(i)当年宣传费x=49时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?
20. (本小题满分12分)已知过点A1,0且斜率为k的直线l与圆C:x2y31交于M,N两点.
(I)求k的取值范围;
(II)若OMON12,其中O为坐标原点,求MN.
21. (本小题满分12分)设函数fxe2x22alnx.
(I)讨论fx的导函数fx的零点的个数;
(II)证明:当a0时fx2aaln2. a
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
22. (本小题满分10分)选修4-1:几何证明选讲
如图AB是O直径,AC是O切线,BC交O与点E.
(I)若D为AC中点,证明:DE是O切线;
(II
)若OA ,求ACB的大小.
23. (本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy 中,直线C1:x2,圆C2:x1y21,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(I)求C1,C2的极坐标方程
. 22
2015全国卷文科数学篇六:2015年高考文科数学试卷全国卷1(解析版)
2015年高考文科数学试卷全国卷1(解析版)
1.已知集合A{xx3n2,nN},B{6,8,10,12,14},则集合A数为( )
(A) 5 (B)4 (C)3 (D)2
2.已知点A(0,1),B(3,2),向量AC(4,3),则向量BC( ) (A) (7,4) (B)(7,4) (C)(1,4) (D)(1,4) 3.已知复数z满足(z1)i1i,则z( )
(A) 2i (B)2i (C)2i (D)2i 4.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
B中的元素个
3111
(B) (C) (D) 1051020
1
5.已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线C:y28x的焦
2
(A)
点重合,A,B是C的准线与E的两个交点,则AB ( )
(A) 3 (B)6 (C)9 (D)12 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )
(A)14斛 (B)22斛 (C)36斛 (D)66斛
7.已知{an}是公差为1的等差数列,若S84S4,则a10( ) Sn为{an}的前n项和,(A)
1719
(B) (C)10 (D)12 22
8.函数f(x)cos(x)的部分图像如图所示,则f(x)的单调递减区间为( )
试卷第1页,总5页
13
,k),kZ 4413
(B)(2k,2k),kZ
4413
(C)(k,k),kZ
4413
(D)(2k,2k),kZ
44
(A)(k
9.执行右面的程序框图,如果输入的t0.01,则输出的n( )
(A) 5 (B)6 (C)10 (D)12
2x12,x1
10.已知函数f(x) ,且f(a)3,则f(6a)( )
log2(x1),x17531 (B) (C) (D) 4444
11.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620,则r( )
(A)
(A)1 (B)2 (C)4 (D)8
12.设函数yf(x)的图像与y2xa的图像关于直线yx对称,且
f(2)f(4)1,则a( )
(A) 1 (B)1 (C)2 (D)4
13.数列an中a12,an12an,Sn为an的前n项和,若Sn126,则n 14.已知函数fxaxx1的图像在点1,f1的处的切线过点2,7,则
3
试卷第2页,总5页
a
xy20
15.若x,y满足约束条件x2y10 ,则z=3x+y的最大值为 .
2xy20
y2
1的右焦点,P是C
左支上一点,A ,当16.已知F是双曲线C:x8
2
APF周长最小时,该三角形的面积为.
17.(本小题满分12分)已知a,b,c分别是ABC内角A,B,C的对边,
2sinB2siAn
sCi.n
(Ⅰ)若ab,求cosB;
(Ⅱ)若B
90,且a 求ABC的面积.
BE平面ABCD,
18.(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,
(Ⅰ)证明:平面AEC平面BED;
(Ⅱ)若ABC120,AEEC, 三棱锥E
ACD的体积为
3
侧面积.
19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费xi和年销售量yii1,2,及一些统计量的值.
,8数据作了初步处理,得到下面的散点图
试卷第3页,总5页
1
表中wi ,w =
8
w
ii1
8
(Ⅰ)根据散点图判断,yabx与ycy关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(III)已知这种产品的年利润z与x,y的关系为z0.2yx ,根据(Ⅱ)的结果回答下列问题:
(Ⅰ)当年宣传费x90时,年销售量及年利润的预报值时多少? (Ⅱ)当年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),……,(un,vn),其回归线vu的斜率和截距的最小二乘估计分别为:
=
(uu)(vv)
i
i
i1
n
(uu)
i
i1
n
,=vu
2
20.(本小题满分12分)已知过点A1,0且斜率为k的直线l与圆C:
x2
2
y31交于M,N两点.
2
(Ⅰ)求k的取值范围;
(Ⅱ)OMON12,其中O为坐标原点,求MN. 21.(本小题满分12分)设函数fxe
2x
alnx.
(Ⅰ)讨论fx的导函数fx的零点的个数; (Ⅱ)证明:当a0时fx2aaln
2
. a
22.(本小题满分10分)选修4-1:几何证明选讲 如图AB是直径,AC是切线,BC交与点E.
(Ⅰ)若D为AC中点,求证:DE是
切线;
试卷第4页,总5页
,求ACB的大小.
23.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy 中,直线C1:x2,圆C2:x1y21,以坐标原点为极点,x轴正半轴为极轴建立极坐标系. (Ⅰ)求C1,C2的极坐标方程. (Ⅱ)若直线C3的极坐标方程为
2
2
π
设C2,C3的交点为M,N,求CM R,2N4
的面积.
24.(本小题满分10分)选修4-5:不等式选讲 已知函数fxx2xa,a0 . (Ⅰ)当a1 时求不等式fx1 的解集;
(Ⅱ)若fx 图像与x轴围成的三角形面积大于6,求a的取值范围.
试卷第5页,总5页
2015全国卷文科数学篇七:2015全国卷2数学试卷及答案(文科)
绝密★启封并使用完毕前
2015年普通高等学校招生全国统一考试
文科数学(全国卷Ⅱ)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至3页,第Ⅱ卷4至6页。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,共60分
1.已知集合Ax|1x2,Bx|0x3,则A
A.1,3 B.1,0 C.0,2 D.2,3 B
2ai3i,则a 1i
A.4 B.3 C.3 D.4 2.若为a实数,且
3.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是
A.逐年比较,2008年减少二氧化碳排放量的效果最显著
B.2007年我国治理二氧化碳排放显现成效
C.2006年以来我国二氧化碳年排放量呈减少趋势
D.2006年以来我国二氧化碳年排放量与年份正相关
4.已知a0,1,b1,2,则(2ab)a
A.1 B.0 C.1 D.2
5.设Sn是等差数列{an}的前n项和,若a1a3a53,则S5
A.5 B.7 C.9 D.11
6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为
1111A. B. C. D. 8765
7
.已知三点A(1,0),BC,则ABC外接圆的圆心到原点的距离为
54
C D
. A.
B33
8.右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a为( )
A.0 B.2 C.4 D.14
19.已知等比数列{an}满足a1,a3a54a41,则a2 4
11A.2 B.1 C. D. 28
10.已知A,B是球O的球面上两点,AOB90,C为该球面上的动点。若三棱锥OABC体积的最大值为36,则球O的表面积为
A、36 B、 64 C、144 D、 256
11.如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,∠BOP=x。将动点P到AB两点距离之和表示为x的函数f(x),则f(x)的图像大致为
12.设函数f(x)ln(1|x|)
A.,1 B., 1,则使得f(x)f(2x1)成立的x的取值范围是 1x21
3131, C.1111, D.,, 3333
第II卷
本卷包括必考题和选考题两部分。第(13)题-第(21)题为必考题,每个试题考生都必须作答。第(22)题~第(24)题未选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分,共20分
13.已知函数fxax2x的图像过点(-1,4),则a. 3
xy5014.若x,y满足约束条件2xy10 ,则z=2x+
y的最大值为
x2y10
15.已知双曲线过点,且渐近线方程为y1x,则该双曲线的标准方程为 2
216.已知曲线yxlnx在点1,1 处的切线与曲线yaxa2x1 相切,则a
三、解答题
17(本小题满分12分)△ABC中D是BC上的点,AD平分PAC,BD=2DC.
(I)求sinB ;(II)若BAC60,求B. sinC
18. (本小题满分12分)某公司为了了解用户对其产品的满意度,从A
,B两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频率分布表.
(I)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度,(不要求计算出具体值,给出结论即可)
(II)根据用户满意度评分,将用户的满意度评分分为三个等级:
估计那个地区的用户的满意度等级为不满意的概率大,说明理由.
19. (本小题满分12分)如图,长方体ABCDA1B1C1D1中AB=16,BC=10,AA18,点E,F分别在A1B1,D1C1 上,A1ED1F4.过点E,F的平面与此长方体的面相交,交线围成一个正方形. (I)在图中画出这个正方形(不必说明画法与理由);
(II)求平面把该长方体分成的两部分体积的比值.
x2y220. (本小题满分12分)已知椭圆C:221ab0
,
点在C上. ab(I)求C的方程;
(II)直线l不经过原点O,且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,证明:直线OM的斜率与直线l的斜率乘积为定值.
21. (本小题满分12分)已知fxlnxa1x.
(I)讨论fx的单调性;
(II)当fx有最大值,且最大值为2a2时,求a的取值范围.
2015全国卷文科数学篇八:2015全国卷1数学试卷及答案(文科)
绝密★启封并使用完毕前
一. 选择题:本大题共12小题,每小题5分。
1、已知集合A{xx3n2,nN},B{6,8,10,12,14},则集合A (A) 5 (B)4 (C)3 (D)2
2、已知点A(0,1),B(3,2),向量AC(4,3),则向量BC
(A) (7,4) (B)(7,4) (C)(1,4) (D)(1,4)
3、已知复数z满足(z1)i1i,则z( )
(A) 2i (B)2i (C)2i (D)2i B中的元素个数为
4、如果3个正数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
(A) 3111 (B) (C) (D) 5101020
1,E的右焦点与抛物线C:y28x的焦点重合,A,B25、已知椭圆E的中心为坐标原点,离心率为
是C的准线与E的两个交点,则AB
(A) 3 (B)6 (C)9 (D)12
6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有
委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙
角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米
堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62
立方尺,圆周率约为3,估算出堆放的米有( )
(A)14斛 (B)22斛 (C)36斛 (D)66斛
7、已知{an}是公差为1的等差数列,Sn为{an}的前n项和,若S84S4,则a10( )
(A) 1719 (B) (C)10 (D)12 22
8、函数f(x)cos(x)的部分图像如图所示,则f(x)的单调递减区间为( )
(A)(k1313,k),kZ (B)(2k,2k),kZ 4444
(C)(k1313,k),kZ (D)(2k,2k),kZ 4444
9、执行右面的程序框图,如果输入的t0.01,则输出的n( )
(A) 5 (B)6 (C)10 (D)12
2x12,x110、已知函数f(x) ,且f(a)3,则f(6a)
log2(x1),x1
(A)4531 (B) (C) (D) 7444
11、圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620,则r( )
(A)1 (B)2 (C)4 (D)8
12、设函数yf(x)的图像与y2xa的图像关于直线yx对称,且f(2)f(4)1, 则a( )
(A) 1 (B)1 (C)2 (D)4
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分
13、数列an中a12,an12an,Sn为an的前n项和,若Sn126,则n.
14.已知函数fxaxx1的图像在点1,f1的处的切线过点2,7,则 a. 3
xy2015. 若x,y满足约束条件x2y10 ,则z=3x+y的最大值为.
2xy20
y2
1的右焦点,P是C
左支上一点,A ,当APF周长最小16.已知P是双曲线C:x82时,该三角形的面积为 .
三、解答题
17. (本小题满分12分)已知a,b,c分别是ABC内角A,B,C的对边,sinB2sinAsinC. (I)若ab,求cosB;
2
(II)若B
90,且a 求ABC的面积.
18. (本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,BE平面ABCD, (I)证明:平面AEC平面BED;
(II)若ABC120,AEEC, 三棱锥E
ACD.
19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费xi,和年销售量yii1,2,3,,8的数据作了初步处理,得到下面的散点图及一些统计量的值
.
(I)根据散点图判断,ya
bx与ycy关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(II)根据(I)的判断结果及表中数据,建立y关于x的回归方程;
(III)已知这种产品的年利润z与x,y的关系为z0.2yx ,根据(II)的结果回答下列问题: (i)当年宣传费x90时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1 v1),(u2 v2)…….. (un vn),其回归线v=u
的斜率和截距的最
小二乘估计分别为:
20(本小题满分12分)已知过点A1,0且斜率为k的直线l与圆C:x2y31交于M,N两点.
(I)求k的取值范围; (II)OMON12,其中O为坐标原点,求MN.
21. (本小题满分12分)设函数fxe2xalnx.
(I)讨论fx的导函数fx的零点的个数; (II)证明:当a0时fx2aaln
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号
22. (本小题满分10分)选修4-1:几何证明选讲
如图AB是圆O直径,AC是圆O切线,BC交圆O与点E.
(I)若D为AC中点,求证:DE是圆O切线;
(II
)若OA ,求ACB的大小.
23. (本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy 中,直线C1:x2,圆C2:x1y21,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(I)求C1,C2的极坐标方程.
(II)若直线C3的极坐标方程为22222. aπR,设C2,C3的交点为M,N,求C2MN 的面积. 4
24. (本小题满分10分)选修4-5:不等式证明选讲
已知函数fxx2xa,a0 .
(I)当a1 时求不等式fx1 的解集;
(II)若fx 图像与x轴围成的三角形面积大于6,求a的取值范围.
2015全国卷文科数学篇九:2015· 全国卷1(文数)精校完整解析版
2015·全国卷Ⅰ(文科数学)
1.A1[2015·全国卷Ⅰ] 已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )
A.5 B.4 C.3 D.2
1.D [解析] 集合A={2,5,8,11,14,17,„},所以A∩B={8,14},所以A∩B中有2个元素.
→→
2.F1、F2[2015·全国卷Ⅰ] 已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=( )
A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4)
→→→→
2.A [解析] AB=(3,1),BC=AC-AB=(-4,-3)-(3,1)=(-7,-4). 3.L4[2015·全国卷Ⅰ] 已知复数z满足(z-1)i=1+i,则z=( ) A.-2-i B.-2+i C.2-i D.2+i
3.C [解析] 设复数z=a+bi(a,b∈R),代入(z-1)i=1+i得(a-1+bi)i=1+i,即-b
-b=1,
+(a-1)i=1+i.根据复数相等可得得a=2,b=-1,所以复数z=2-i.
a-1=1,
4.K2[2015·全国卷Ⅰ] 如果3个正整数可作为一个直角三角形三条边的边长,则称这3
个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
31A. B. 10511C. D. 1020
4.C [解析] 从1,2,3,4,5中任取3个不同的数有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共101
种取法,其中只有(3,4,5)是一组勾股数,所以构成勾股数的概率为10
1
5.H5、H7[2015·全国卷Ⅰ] 已知椭圆E的中心为坐标原点,离心率为,E的右焦点与
2抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=( )
A.3 B.6 C.9 D.12
5.B [解析] 抛物线C:y2=8x的焦点坐标为(2,0),准线方程为x=-2,即椭圆的半c21x2y22
焦距c=2.又离心率e==a=4,于是b=12,则椭圆的方程为=1.A,B
aa21612是C的准线x=-2与E的两个交点,把x=-2代入椭圆方程得y=±3,所以|AB|=6.
6.G12[2015·全国卷Ⅰ] 《九章算术》是我国古代内容极为丰富的数学名著,书中有如
下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图1-1,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的
高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(
)
图1-1
A.14斛 B.22斛 C.36斛 D.66斛
1
6.B [解析] 米堆的体积即为四分之一的圆锥的体积,设圆锥底面半径为r,则×2πr
41611320320
=8,得r=,所以米堆的体积为×πr2×5≈立方尺),1.62≈22(斛).
3499π7.D2[2015·全国卷Ⅰ] 已知{an}是公差为1的等差数列,Sn为{an}的前n项和.若S8=
4S4,则a10=( )
1719A. B. 22C.10 D.12
8×74×317.B [解析] 由S8=4S4,得8a1+1=44a1+×1,解得a1=,所以a10=
222119
+(10-1)×1=. 22
8.C4[2015·全国卷Ⅰ] 函数f(x)=cos(ωx+φ)的部分图像如图1-2所示,则f(x)的单调递减区间为(
)
图1-2
13
kπ-kπ+,k∈Z A.44
13
2kπ-2kπ+,k∈Z B.44
13
k-,k+,k∈Z C.44
13
2k2k,k∈Z D.44
2πT51
8.D [解析] =1,所以T=22,所以ω=±π.
244|ω|
1
因为函数f(x)的图像过点4,0,
ωπ
所以当ω=π时,+φ=+2kπ,k∈Z,
42π
解得φ2kπ,k∈Z;
4
ωπ
当ω=-π时,+φ=-+2kπ,k∈Z,
42π
解得φ=-+2kπ,k∈Z.
4
ππ13
所以f(x)=cosπx+,由2kπ<πx+<π+2kπ解得2k-<x<2k+,k∈Z,故选
4444D.
9.L1[2015·全国卷Ⅰ] 执行图1-3所示的程序框图,如果输入的t=0.01,则输出的n=
(
)
图1-3
A.5 B.6 C.7 D.8
9.C [解析] 经推理分析可知,若程序能满足循环,则每循环一次,S的值减少一半,1111
循环6次后S的值变为>0.01,循环7次后S的值变为<0.01,此时不再满足循
2642128环的条件,所以结束循环,于是输出的n=7.
x1
2-2,x≤1,
10.B6、B7[2015·全国卷Ⅰ] 已知函数f(x)=且f(a)=-3,则f(6
-log2(x+1),x>1,
-
-a)=( )
75
A.- B.-
4431C D.-
44
10.A [解析] 因为2x1-2>-2恒成立,所以可知a>1,于是由f(a)=-log2(a+1)=-
-
3得a=7,所以f(6-a)=f(-1)=2
-1-1
7
-2.
4
11.G2[2015·全国卷Ⅰ] 圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图1-4所示.若该几何体的表面积为16+20π,则r
=(
)
图1-4
A.1 B.2 C.4 D.8
11.B [解析] 由三视图可知,此组合体的前半部分是一个底面半径为r,高为2r的半圆柱(水平放置),后半部分是一个半径为r的半球,其中半圆柱的一个底面与半球的半个圆11
面重合,所以此几何体的表面积为2r·2rr2+r2+πr·2r+2πr2=4r2+5πr2=16+
2220π,解得r=2.
+
12.B6、B7[2015·全国卷Ⅰ] 设函数y=f(x)的图像与y=2xa的图像关于直线y=-x对称,且f(-2)+f(-4)=1,则a=( )
A.-1 B.1 C.2 D.4
12.C [解析] 在函数y=f(x)的图像上任设一点P(x,y),其关于直线y=-x的对称点y′-yx′-x=1,x′=-y,
为P′(x′,y′),则有解得由于点P′(x′,y′)在函数y=2
y′=-x.x+x′y+y′
220,
-+
x+a
的图
像上,于是有-x=2ya,得-y+a=log2(-x),即y=f(x)=a-log2(-x),所以f(-2)+f(-
4)=a-log22+a-log24=2a-3=1,所以a=2.
13.[2015·全国卷Ⅰ] 在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和.若Sn=126,则n=________.
13.D36 [解析] 由a1=2,an+1=2an可知数列{an}为等比数列,公比为2,所以Sn=2(1-2n)
126,得n=6.
1-2
14.B12[2015·全国卷Ⅰ] 已知函数f(x)=ax3+x+1的图像在点(1,f(1))处的切线过点(2,7),则 a=________.
14.1 [解析] 因为f′(x)=3ax2+1,所以函数在点(1,f(1)),即点(1,2+a)处的切线的2+a-7
斜率k=f′(1)=3a+1.又切线过点(2,7),则经过点(1,2+a),(2,7)的直线的斜率k=1-2
2+a-7
所以3a+1,解得a=1.
1-2
x+y-2≤0,
15.E5[2015·全国卷Ⅰ] 若x,y满足约束条件x-2y+1≤0,则z=3x+y的最大值为
2x-y+2≥0,________.
15.4 [解析] 作出约束条件表示的可行域如图所示,当目标函数线平移至经过可行域的顶点A(1,1)时,目标函数z取得最大值,故zmax=3×1+1=
4.
y2
16.H6[2015·全国卷Ⅰ] 已知F是双曲线C:x=1的右焦点,P是C的左支上一点,
8
2
A(0,6) ,当△APF周长最小时,该三角形的面积为________.
16.126 [解析] 由已知得a=1,c=3,则F(3,0),|AF|=15.设F1是双曲线的左焦点,根据双曲线的定义有|PF|-|PF1|=2,所以|PA|+|PF|=|PA|+|PF1|+2≥|AF1|+2=17,即点P是线段AF1与双曲线的交点时,|PA|+|PF|=|PA|+|PF1|+2最小,即△APF周长最小,此时,1234sin∠OAFcos∠PAF=1-2sin2∠OAF=即有sin∠PAF=.由余弦定理得|PF|2=|PA|2
5252523
+|AF|2-2|PA||AF|cos∠PAF,即(17-|PA|)2=|PA|2+152-2|PA|×15×,解得|PA|=10,于是S
25
△APF
1146=|PA|·|AF|·sin∠PAF=10×15×126. 2225
17.C5、C8[2015·全国卷Ⅰ] 已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sin Asin C.
(1)若a=b,求cos B;
(2)若B=90°,且a2, 求△ABC的面积. 17.解:(1)由题设及正弦定理可得b2=2ac. 又a=b,所以可得b=2c,a=2c. a2+c2-b21
由余弦定理可得cos B=.
2ac4(2)由(1)知b2=2ac.
因为B=90°,所以由勾股定理得a2+c2=b2.
故a2+c2=2ac,得c=a2, 所以△ABC的面积为1. 18.G5[2015·全国卷Ⅰ] 如图1-5,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.
(1)证明:平面AEC⊥平面BED;
2015全国卷文科数学篇十:2015年高考新课标I卷文科数学试题及答案
绝密★启用前
试卷类型:新课标Ⅰ(A)
2015年普通高等学校招生全国统一考试
文科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页,满分150分.
第Ⅰ卷
一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A{xx3n2,nN},B{6,8,10,12,14},则集合A为
(A) 5 (B)4 (C)3 (D)2
(2)已知点A(0,1),B(3,2),向量AC(4,3),则向量BC
(A) (7,4) (B)(7,4) (C)(1,4) (D)(1,4)
(3)已知复数z满足(z1)i1i,则z
(A) 2i (B)2i (C)2i (D)2i B中的元素个数
(4)如果3个正数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为
3111 (B) (C) (D) 1051020
12(5)已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线C:y8x的焦点2(A)
重合,A,B是C的准线与E的两个交点,则AB
(A) 3 (B)6 (C)9 (D)12
(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问
题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其
意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一)
,
米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有
(A)14斛 (B)22斛 (C)36斛 (D)66斛
(7)已知{an}是公差为1的等差数列,Sn为{an}的前n项和,若S84S4,则a10
(A) 1719 (B) (C)10 (D)12 22
(8)函数f(x)cos(x)的部分图像如图所示,则f(x)的单调递减区间为
(A)(k13,k),kZ 44
13(B)(2k,2k),kZ 44
13(C)(k,k),kZ 44
13(D)(2k,2k),kZ 44
(9)执行右面的程序框图,如果输入的t0.01,则输出的n
(A)5 (B)6 (C)7 (D)8
2x12,x1(10)已知函数f(x) ,且f(a)3,则log2(x1),x1
f(6a)
(A)4531 (B) (C) (D) 7444
(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几
何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体
的表面积为1620,则r
(A)1
(B)2
(C)4
(D)8
(12)设函数yf(x)的图像与y2xa的图像关于直线yx对称,且f(2)f(4),则1a
(A) 1 (B)1 (C)2 (D)4
第Ⅱ卷
本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须作答。第22题~第24题为选考题,考生根据要求作答。
二.填空题:本大题共4小题,每小题5分。
(13)在数列an中a12,an12an,Sn为an的前n项和,若Sn126,则n
(14)已知函数fxa3xx1的图像在点1,f1的处的切线过点2,7,则 a.
xy20(15)若x,y满足约束条件x2y10 ,则z=3x+y的最大值为2xy20
y2
A .当APF周1的右焦点,(16)已知F是双曲线C:xP是C
左支上一点,82长最小时,该三角形的面积为 .
三.解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
2已知a,b,c分别是ABC内角A,B,C的对边,sinB2sinAsinC.
(I)若ab,求cosB;
(II)若B
90,且a 求ABC的面积.
(18)(本小题满分12分)
如图四边形ABCD为菱形,G为AC与BD交点,BE平面
ABCD.
(I)证明:平面AEC平面BED;
(II)若ABC120,AEEC, 三棱锥E
ACD的体积为
侧面积.
(19)(本小题满分12分) 3
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费xi,和年销售量yii1,2,3,,8的数据作了初步处理,得到下面的散点图及一些统计量的值
.
(I)根据散点图判断,ya
bx与yc,哪一个宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(II)根据(I)的判断结果及表中数据,建立y关于x的回归方程;
(III)已知这种产品的年利润z与x,y的关系为z0.2yx ,根据(II)的结果回答下列问题:
(i)当年宣传费x90时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?
(20)(本小题满分12分)
已知过点A1,0且斜率为k的直线l与圆C:x2y31交于M,N两点. 22
(I)求k的取值范围;
(II)OMON12,其中O为坐标原点,求MN.
(21)(本小题满分12分)
设函数fxe2xalnx.
(I)讨论fx的导函数fx的零点的个数;
(II)证明:当a0时,fx2aaln
请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分。作答时请写清题号。
(22)(本小题满分10分)选修4-1:几何证明选讲
如图AB是圆O直径,AC是圆O切线,BC交圆O与点
E. 2. a
(I)若D为AC中点,求证:DE是圆O切线;
(II
)若OA,求ACB的大小.